
Improving Robust Decisions with Data*

Xiaoyu Cheng†

February 10, 2026

Abstract

A decision-maker faces uncertainty governed by a data-generating process (DGP),

which is only known to belong to a set of sequences of independent but possibly non-

identical distributions. A robust decision maximizes the expected payoff against the

worst possible DGP in this set. This paper characterizes when and how such robust de-

cisions can be objectively improved with data — that is, yield higher expected payoffs

under the true DGP regardless of which DGP is the truth. It further develops sim-

ple and novel inference procedures that achieve such improvement, while common

methods (e.g., maximum likelihood) may fail to do so.
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1 Introduction

When a decision-maker (DM) lacks sufficient knowledge about the probability law gov-
erning an uncertain environment, they may want their decisions to be robust. This concern
for robustness is often modeled by ranking choices by their worst-case expected payoffs
among a set of possible laws (Blum and Rosenblatt, 1967; Gilboa and Schmeidler, 1989;
Hansen and Sargent, 2007; Carroll, 2019). With insufficient knowledge, gathering data is
a classic means of learning about the environment to help guide decisions. Here, learning
involves using data to revise the set of possible laws. A revision with data is said to provide
an objective improvement if the data-revised robust decision yields a higher expected pay-
off under the true law than the robust decision without any data-revision, the benchmark
robust decision. This paper studies when and how data may be used to achieve such an
objective improvement regardless of which possible law is the true one.

The analysis is conducted in a decision environment where it is a priori unclear whether
and how data can generate objective improvement — one in which the true law cannot be
uniquely identified even asymptotically. Specifically, the DM faces a countable sequence of
random experiments (e.g., coin flips) that share the same set of outcomes. The probability
law governing these realizations, referred to as the data-generating process (DGP), is a
sequence of independent but possibly non-identical distributions over the outcomes. The
DM initially knows there is a set of possible DGPs that contains the true one, observes
sample data given by realizations of some experiments, and then makes a decision whose
payoff depends only on future outcomes.

This non-identical decision environment captures settings with unobserved heterogene-
ity. For example, consider an online platform, say Netflix, making content recommenda-
tions to users based on feedback from other users with similar profiles. Users’ preferences,
however, are usually also determined by their various offline activities that cannot be ob-
served, which often further affect how they interact with the platform. As a result, the
sequential user feedback data collected by Netflix can be viewed as generated by a se-
quence of independent but possibly non-identical distributions.1 In this case, Netflix is
motivated to use its data in a robust manner to guard against the concern that the data could
be more from one type of user, whereas future users that determine payoffs could be more
of a different type.

Regardless of what data Netflix/the DM observes, they can always rely on their initial

1See Cao (2014) for a discussion on the issue of non-IIDness in online recommender systems.
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belief to make the benchmark decision, which is robust against all initially possible DGPs.
Notice, because the experiments are independent, the benchmark decision does not depend
on the data at all.2 As a result, the benchmark decision ensures robustness, but at the cost
of ignoring any information that might lead to better decisions.

The goal of this paper is to develop a strategy for using data that addresses both the
concern for robustness and the desire for improvement. To preview the final output, the
proposed strategy ensures that, in a broad class of decision problems, no matter which DGP
in the initial set is true, a sufficient amount of data will almost surely lead the data-revised
decision to objectively improve upon the benchmark decision, and sometimes strictly so.
With finite samples, the same holds with a pre-specified probability. Hence, this strat-
egy enables the DM to achieve higher expected payoffs under the truth while preserving
robustness, i.e., failing to do so only with either zero or a small pre-specified probability.

What must be true for such a strategy? The following example illustrates a key obser-
vation of this paper.

Example (Introductory Example). Suppose Netflix is deciding how to recommend a movie

to a population of users who might either like it (thumbs-Up) or dislike it (thumbs-Down).

Let {U,D} denote these two possible outcomes observed after a recommendation. Let full

state space be {U,D}∞, i.e., the infinite Cartesian product of these outcomes. Denote any

probability distribution over {U,D} by the probability of U . A data-generating process, P ,

can be written as P = P1 × P2 × · · · with Pi ∈ [0, 1]. Suppose Netflix’s initial knowledge

about the users is given by the set {(1/3)∞} ∪ {3/5, 1}∞, where (1/3)∞ denotes an i.i.d.

sequence with marginal probability 1/3 and the other set is defined as

{3/5, 1}∞ ≡ {P : Pi ∈ {3/5, 1}}.

Intuitively, users share some similarities: they either all like the movie with the same low

probability 1/3, or all like it with high but possibly heterogeneous probabilities, 3/5 or 1.

Suppose Netflix observes feedback from having recommended the movie to N users and

must decide how to recommend it to future users.

2With independence, the set of conditional distributions over future outcomes is solely determined by
the set of DGPs regardless of the realized outcomes. Independence is assumed because this fact eases the
exposition. In more general environments, the benchmark should be understood as the robust decision under
full Bayesian or prior-by-prior updating (Pires, 2002). Namely, the DM applies Bayes’ rule to update every
DGP in the initial set conditioning on the sample data to obtain a set of posteriors over future outcomes. In
this case, all results either directly apply or generalize under standard conditions, see Appendix B.

3



Decision Problem I. Suppose Netflix can recommend the movie either aggressively (a)

or mildly (m).3 The aggressive recommendation yields a higher payoff than a mild one

if users like the movie, but is worse otherwise. Specifically, let a(U) = 2, a(D) = −1,

m(U) = 1/2, and m(D) = 0 be the state-contingent payoffs. Within the initial set of

DGPs, the worst-case DGP for both types of recommendation is (1/3)∞, since it gives the

lowest probability of getting a U . Thus, the benchmark decision is to choose m.

With the sample data, Netflix can make a data-revised decision by revising the initial

set of DGPs. A commonly used method is maximum likelihood updating, which revises

the initial set to the subset of DGPs that maximize the likelihood of observing the data.4

When the true DGP is (1/3)∞, with N sufficiently large, Netflix will almost surely observe

sample data with an empirical frequency of U close to 1/3. The likelihood of any such

sample, however, is never maximized by the true DGP in the initial set. Indeed, given any

such sequence of outcomes, one can always find a DGP in the set {3/5, 1}∞ that assigns

probability 1 to outcome U whenever U is observed and probability 3/5 to outcome U

whenever D is observed. In this case, notice that for all N ,

(1/3)N/3 × (2/3)2N/3 < 1N/3 × (2/5)2N/3,

i.e., the likelihood of observing the given sample under this heterogeneous DGP is always

strictly higher than under the true one. Thus, with maximum likelihood updating, Netflix

will asymptotically almost surely rule out the true DGP from their data-revised set.5 As the

worst-case probability of U in the data-revised set increases to 3/5, the aggressive recom-

mendation becomes Netflix’s data-revised decision. However, this decision gives Netflix an

expected payoff of 0 under the true DGP, which is strictly lower than the benchmark (1/6).

Therefore, with maximum likelihood updating, Netflix will almost surely be worse off than

under their benchmark decision when the true DGP is (1/3)∞.

The preceding example shows that ruling out the true DGP can lead to objectively

3For instance, the movie can be recommended either on top of the front page or further down the list. All
payoffs can be interpreted as cardinal measures of how much the recommendation affects users’ likelihood
of interacting with Netflix.

4Proposed and axiomatized in Gilboa and Schmeidler (1993) and Cheng (2022), this updating rule is
applied in Epstein and Schneider (2007) for studying problems in a similar setting.

5While the present paper, to my knowledge, is the first to make such an observation in the context of
maximum likelihood updating, it is intrinsically related to the infamous incidental parameter problem in
making estimates using maximum likelihood, discovered by Neyman and Scott (1948) (see Lancaster (2000)
for a review), and more broadly, the problem of overfitting. The same observation continues to hold for
likelihood-based updating rules, such as those proposed in Epstein and Schneider (2007) and Cheng (2022).
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worse decisions. Theorem 1 formalizes this observation by showing that accommodating
(i.e., containing, with the necessary technical generalizations) the true DGP when revising
the initial set is necessary for guaranteeing objective improvements. This necessity holds
even when restricting attention to basic decision problems, those consist of two alternatives,
one of which yields a constant payoff. Since likelihood-based rules fail this criterion, this
paper develops a simple empirical distribution method that accommodates the truth, as
illustrated below. In the introductory example, this also proves sufficient for objective
improvement.

Example (Introductory Example Continued). Under the empirical distribution method,

Netflix revises the initial set to include DGPs whose average mixture of sample marginals,

i.e., 1/N
∑N

i=1 Pi in this example, is close enough to the empirical distribution of observed

outcomes. Kolmogorov’s strong law of large numbers ensures that the true DGP will be re-

tained in such data-revised sets asymptotically almost surely. More importantly, whenever

the true DGP is retained, the data-revised decision is m if the true DGP is (1/3)∞, and a

if the true DGP belongs to the set {3/5, 1}∞. In all cases, it is either the same or strictly

better than the benchmark decision, thereby achieving objective improvement.

Notice that in Decision Problem I, both alternatives rank the two states U and D the
same in terms of payoffs. Hence, a higher probability of U leads to a higher expected
payoff under each alternative. I define a decision problem (i.e., a set of alternatives) that
possesses this property as a monotone decision problem.6 More specifically, all alternatives
in a monotone decision problem are positive affine transformations of a common payoff
function. In this class of problems, accommodating the truth is both necessary and suffi-
cient for achieving objective improvement (Theorem 2). Monotone decision problems arise
naturally in economic contexts; Section 3 further illustrates how this result may be applied
to canonical principal-agent models.

However, this sufficiency does not extend beyond monotone decision problems (Theo-
rem 3). In other words, such monotonicity is the property that characterizes when accom-
modating the truth suffices for objective improvement.

In searching for objective improvements in all decision problems, Theorem 4 and
Corollary 3 together provide an impossibility result: It is achieved if and only if the true
DGP is uniquely identified from the data. Such identification, however, is generally in-

6This terminology stems from the definition of a “monotone decision problem” in Athey and Levin (2018).
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feasible in non-identical environments.7 Nevertheless, accommodating the truth still pro-
vides a weaker yet meaningful guarantee of objective improvement in all decision problems
(Proposition 1). In particular, it ensures that the decision maker would never prefer to forgo
the opportunity to revise decisions using data in exchange for the certainty-equivalent pay-
off of the benchmark decision.

To summarize, all these results jointly provide three decision-theoretic justifications for
accommodating the truth in data revision: (1) it is necessary for objective improvements,
(2) it is sufficient in monotone decision problems; and (3) it provides a weaker but still
useful guarantee in all decision problems. The paper then proceeds to develop practical
methods that accommodate the truth in non-identical environments.

First, I show that the simple empirical distribution method accommodates the truth
asymptotically almost surely (Theorem 5).

Additional concerns arise when considering data samples of bounded size. The stan-
dard finite-sample approach is to develop methods that accommodate the truth with a pre-
specified probability. This entails making statistical inferences from independent but non-
identical samples, which can be computationally challenging. To address this difficulty,
I develop an easy-to-implement method, the augmented i.i.d. test, which operates as a
simple augmentation to the standard practice of constructing confidence regions from i.i.d.
data. Theorem 6 establishes that this method accommodates the truth with at least the re-
quired pre-specified probability. For a concrete illustration, Section 5.1 presents a Bernoulli
model with ambiguous nuisance parameters and shows that the data-revised sets given by
the augmented i.i.d. test are simple extensions of the Wilson Confidence Intervals (Wilson,
1927).

Similar non-identical decision environments have been adopted in the literature to study,
for instance, social learning with heterogeneous individuals (Reshidi et al., 2025; Chen,
2026), dynamic portfolio choice under ambiguous idiosyncratic shocks (Epstein and Schnei-
der, 2007), and estimating parameters of incomplete models (Epstein et al., 2016). In all
these models, the revision rules developed in this paper can provide new perspectives and
often distinct predictions. As an illustration, in Section 5.2, I consider the model in Reshidi
et al. (2025). They assume the DM applies prior-by-prior updating and show there can be
non-vanishing ambiguity. Proposition 2 here shows all that ambiguity vanishes asymptot-
ically if the DM instead applies the revision rules proposed here. In fact, learning under

7As in the example, for any sample size N , there always exist multiple DGPs in the set {3/5, 1}∞ such
that they are the same up to the N -th experiment, but have different marginals over future outcomes.
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the new revision rules is more effective compared to commonly used updating rules and is
guaranteed to be correct.

Finally, I briefly summarize the main contributions of this paper to the literature on
robust statistical decisions (Wald, 1950; Watson and Holmes, 2016; Hansen and Marinacci,
2016; Manski, 2021). A more detailed discussion is provided in Section 6. Most papers
in this literature focus on only the “data-revised decision” in their decision context. The
main innovation here is to explicitly compare the data-revised decision with the benchmark
decision that could have been made without using data. This comparison turns out to be
not always obvious. Indeed, I show that it is impossible to guarantee the data-revised
decision to be always better whenever the true DGP is not uniquely identified. In light of
this impossibility, the present paper contributes to the literature by (1) characterizing when
the simple criterion of accommodating the truth suffices for objective improvement and (2)
providing practical inference methods that achieve it in both asymptotic and finite-sample
settings.

Outline. Section 2 introduces the decision environment. Section 3 characterizes when
and how objective improvements can be achieved. Section 4 defines and studies the pro-
posed revision rules. Section 5 presents two applications with parametric models. Section 6
provides a further discussion on related literature. All proofs are collected in the Appendix.

2 The Decision Environment

There is a countably infinite sequence of random experiments that all have the same finite
set of outcomes S with generic element s.8 The experiments are ordered and indexed by
the set N = {1, 2, · · · }. The full state space is denoted by Ω = S∞ ≡

∏
i Si with generic

element ω. Let Σ denote the discrete σ-algebra on S and Σ∞ the product σ-algebra on Ω.
For any given sample size N ∈ N, let SN ≡

∏N
i=1 Si denote the sample states. A

decision-maker (DM) observes sample data ωN ∈ SN and makes a decision whose payoff
depends only on future unrealized experiments. Let ΩN ≡

∏∞
i=N+1 Si ≡ S∞

N denote the
future states with generic element ω̃N . Define ΣN and Σ∞

N similarly.
The DM’s decision is the choice from a set of alternatives, named acts. An act is

defined as a bounded Σ∞
N -measurable function, f : ΩN → R, that maps future states to

payoffs (measured in utilities). Let F be the space of all acts endowed with the product

8The finiteness assumption is made for simplicity. Section 3.2 and Appendix B provide discussions on
how to extend the results in this paper to infinite state spaces.
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topology.9 An act is finitely-based if it depends only on finitely many experiments (i.e., not
on tail events). Let x ∈ R denote a constant act that gives the same payoff x in all future
states. A decision problem D is a nonempty and compact subset of F . Let D denote the
collection of all decision problems. Say that a decision problem D is binary if |D| = 2.

I call a sequence of independent but possibly non-identical distributions over outcomes
a data-generating process (DGP). Formally, let ∆(Ω) denote the set of all countably addi-
tive probability measures on (Ω,Σ∞), endowed with the topology of setwise convergence.
The collection of all DGPs is the subset ∆indep(Ω) =

∏∞
i=1 ∆(Si) ⊆ ∆(Ω). On ∆indep(Ω),

the subspace topology inherited from ∆(Ω) under setwise convergence coincides with the
product topology on

∏∞
i=1∆(Si). For each P ∈ ∆indep(Ω), write Pi for its marginal distri-

bution on Si, PN for its joint marginal on SN , and P∞
N for its marginal on ΩN = S∞

N .
Suppose the DM knows there is an initial set P of possible DGPs. When fixing some

sample data ωN , let P ∗ denote the true DGP that generates the data and governs the future
states. The DM’s initial knowledge is “correctly specified”, meaning that it always contains
the true DGP. Using the terminology from Bayesian learning literature (Kalai and Lehrer,
1993), the DM’s initial knowledge contains a “grain of truth”:

Assumption 1. P ∗ ∈ P .

What this assumption also means is that every DGP in the initial set could be the true
one governing the experiments. In addition, assume the set P is compact and all P ∈ P
have full support.10 Let Pi, PN and P∞

N denote the sets of their corresponding marginals.
Given a decision problem D, the DM can make a robust decision by using the initial

set of DGPs. Formally, let the benchmark decision, denoted by c(D) ∈ D, be given by

c(D) ≡ argmax
f∈D

min
P∈P

∫
ΩN

f(ω̃N)dP
∞
N (ω̃N) = argmax

f∈D
min

P∞
N ∈co(P∞

N )

∫
ΩN

f(ω̃N)dP
∞
N (ω̃N),

where co(P∞
N ) denotes the closed and convex hull of P∞

N . The “min” is well-defined as P
is compact. The equality follows since the minimum can be achieved at an extreme point
and thus belongs to P . Moreover, c(D) is defined as a singleton by imposing an arbitrary
(but fixed) tie-breaking rule.

9For simplicity, I suppress the dependence of F on N . This is without loss of generality since any act on
ΩN can be isomorphically defined on ΩM for all M ∈ N.

10This is a standard assumption for studying the update of a set of probability measures. It is also used
when establishing a Central Limit Theorem in this environment. See the proof of Lemma A.1 for details.
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With sample data ωN , the DM can also choose to revise their initial set to a data-revised

set of DGPs. Let P(ωN) ⊆ ∆indep(Ω) denote the revised set. Given Assumption 1, further
let P(ωN) ⊆ P as there is no need to consider DGPs outside P . Importantly, the data-
revised set is assumed to depend only on the initial set P and sample data ωN but not on
D, i.e., the specific decision problem considered. In other words, the DM’s revision rule is
purely “data-based”. In the literature on belief updating, this is known as consequentialism,
see Hanany and Klibanoff (2007, 2009) and Siniscalchi (2009) for discussions.

Let c(D,ωN) ∈ D denote the DM’s data-revised decision given (the closed and convex
hull of) their data-revised set P(ωN), i.e.,

c(D,ωN) ≡ argmax
f∈D

min
P∞
N ∈co(P(ωN )∞N )

∫
ΩN

f(ω̃N)dP
∞
N (ω̃N),

where the “min” is well defined as co
(
P(ωN)∞N

)
is compact and c(D,ωN) is also defined

to be a singleton by imposing a tie-breaking rule, subject to the following consistency
requirement:

Assumption 2. If c(D) is among the maximizers in the data-revised program, then c(D,ωN) =

c(D). Otherwise, the tie-breaking can be arbitrary.

Assumption 2 makes sure that if the DM’s data-revised set coincides with their initial
set, then their data-revised decision is the same as the benchmark. This rules out unin-
teresting complications when the DM’s decisions are different only because of different
tie-breakings.11

Importantly, the DM’s objective payoff from an act is determined by the true DGP P ∗

that actually governs the future. To make this explicit, let

W (f, P ∗) =

∫
ΩN

f(ω̃N)dP
∗∞
N (ω̃N)

denote the expected payoff of act f evaluated under the true DGP P ∗. For any decision
problem D, the DM’s objective payoffs from their benchmark and data-revised decisions
are then W (c(D), P ∗) and W (c(D,ωN), P ∗), respectively.

11Also notice both decisions are defined as deterministic choices from D, which seems to rule out random-
izations from the DM’s decisions. This is, in fact, more general as one can explicitly add those randomizations
as acts and it will just be another well-defined decision problem. The current definition allows for richer de-
cision patterns: By imposing different tie-breaking rules, it allows the DM to have different preferences in
terms of whether randomization hedges against ambiguity. See Saito (2015) and Ke and Zhang (2020) for
discussions and characterizations of such preferences.

9



Because the DM’s decisions depend only on future states and are made using the robust
criterion, it is useful to define the following notions that suitably generalize set inclusions:

Definition 1. The data-revised set P(ωN) accommodates a DGP P if

P∞
N ∈ co(P(ωN)∞N ).

The data-revised set P(ωN) refines the initial set P if

co(P(ωN)∞N ) ⫋ co(P∞
N ).

Say that P(ωN) is a truth-accommodating refinement if it accommodates the true DGP

and refines the initial set.

Notice that if P ∗ ∈ P(ωN), then P(ωN) accommodates P ∗. Moreover, P(ωN) refines
P only if P(ωN) is a proper subset of P . In practice, since a convex combination of
DGPs in ∆indep(Ω) remains in ∆indep(Ω) only when the DGPs share identical marginals
in all but one experiment, a truth-accommodating refinement is thus essentially (P ∗)∞N ∈
P(ωN)∞N ⫋ P∞

N .

3 Objective Improvements

Fix an initial set P , some sample data ωN generated by the true DGP P ∗ ∈ P . This section
investigates what guarantees objective improvements across different decision problems.
To this end, consider the following definition.

Definition 2. Let C ⊆ D denote a class of decision problems. A data revision is said to

provide objective improvement in C if, for all D ∈ C,

W (c(D,ωN), P ∗) ≥ W (c(D), P ∗),

and the inequality is strict for some D ∈ C.

Among all decision problems, the simplest possible form is the choice between an
uncertain and a constant act. Such a canonical form is often used to model, for example,
the decision of whether or not to approve a new drug, implement a new policy, convict a
defendant, and invest in an asset. I call such decision problems, i.e., binary with a constant
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act, basic decision problems. Arguably, basic decision problems are the building blocks
of more complex decision problems, thus any general enough class of decision problems
should include them as special cases. Guaranteeing objective improvements at least in all
basic decision problems is a reasonable minimal requirement for any data revision. The
following result identifies a necessary condition for this guarantee: The data-revised set
must accommodate the true DGP.

Theorem 1. If the data-revised set P(ωN) does not accommodate the true DGP P ∗, then

there exists a basic decision problem for which the data-revised decision is objectively

worse than the benchmark decision, i.e., W (c(D,ωN), P ∗) < W (c(D), P ∗).

The proof of Theorem 1 relies on a standard separating hyperplane argument by notic-
ing that P ∗ ∈ P (Assumption 1), but (P ∗)∞N /∈ co(P(ωN)∞N ) (Definition 1). The key
takeaway is that if the data-revised set fails to accommodate the true DGP, then one can
easily construct a basic decision problem for which the data-revised decision is objectively
worse. In this sense, Theorem 1 highlights that accommodating the true DGP is a necessary
condition for achieving objective improvement in any class of decision problems including
basic decision problems as special cases.

A truth-accommodating refinement, a slight strengthening of this necessary condition,
can be shown to be also sufficient for objective improvement in basic decision problems.
The next section establishes this result by characterizing the essentially largest class of
decision problems for which this sufficiency holds, a class that includes all basic decision
problems.

3.1 Monotone Decision Problems

What structural feature of a decision problem makes a truth-accommodating refinement
sufficient for objective improvement? To build intuition, consider a betting decision prob-

lem, where every available act is a bet on the same event. Formally, in a betting decision
problem, there exists A ⊆ ΩN such that for each f , for all ω̃ ∈ A and ω̃′ ∈ Ac,

f(ω̃) = f(A) ≥ f(Ac) = f(ω̃′).

In words, all acts rank outcomes in the same way across the two events, A and Ac, but
differ in their payoff tradeoffs. As a result, a higher belief in A (i.e., a greater probability
assigned to A) leads to a higher expected payoff of every act. Moreover, all acts can
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be ordered so that higher acts are optimal under higher beliefs. This is in line with the
definition of monotone decision problems in Athey and Levin (2018),12 which highlights
that both payoffs and choices move in the same direction as beliefs.

This form of monotonicity is precisely what makes a truth-accommodating refinement
sufficient for objective improvement. When choosing how much to bet on the event A,
the worst-case DGP is always the one assigning the lowest probability to A. A truth-
accommodating refinement raises this worst-case probability while keeping it below the
true probability. Monotonicity then guarantees that the data-revised decision moves closer
to the exact optimal act under P ∗, thereby delivering a higher objective payoff than the
benchmark.

Motivated by this intuition, I now generalize the betting problem to higher dimensions
by defining a class of monotone decision problems.

Definition 3. A decision problem D is called a monotone decision problem if there exists

an act g ∈ F (not necessarily contained in D) such that, for every f ∈ D,

f = λfg + cf ,

for some λf ≥ 0 and cf ∈ R. Let Dm denote the class of monotone decision problems.

Intuitively, all acts in a monotone decision problem are non-negative affine transforma-
tions of a common reference act g. Hence they induce the same ranking over future states
and satisfy

W (f, P ) = λfW (g, P ) + cf , ∀f ∈ D.

Thus the DM’s evaluation reduces to the single statistic W (g, P ): a higher belief in g (i.e.,
a greater expected payoff of g) raises the expected payoff of every act. This generalizes the
monotonicity observed in betting problems. Importantly, the “monotone” label encodes a
one-dimensional structure: although the underlying state space may be high-dimensional,
all payoff-relevant variation collapses to the single expectation of g. From a geometric
perspective, after subtracting the constant, all acts are aligned in the same direction. Thus,
choosing among these acts is essentially trading off between their sensitivity to beliefs
(λf ) against their guaranteed payoffs (cf ), just as in betting decision problems one trades
off payoffs across two events.

12Their definition says that the optimal act is monotone in signal x, which corresponds to a posterior belief
over states. The additional property here is that it also leads to a higher expected payoff.

12



Basic decision problems are trivially monotone, since the only non-constant act can be
taken as the reference act. It thus follows from Theorem 1 that accommodating the true
DGP is necessary for objective improvement in monotone decision problems. The next
result establishes sufficiency.

Theorem 2. A data revision provides objective improvement in monotone decision prob-

lems if and only if the data-revised set is a truth-accommodating refinement.

Theorem 2 delivers a clear and powerful message: a truth-accommodating refinement is
sufficient to guarantee objective improvement in monotone decision problems, regardless
of the true DGP. Its proof builds on the intuition developed in betting decision problems,
but the extension is substantial: monotone decision problems constitute a broader class
that encompasses a wide range of economically relevant environments. To illustrate this
concretely, I next show that the problem of choosing among linear contracts in a canonical
principal-agent model is a monotone decision problem. Consequently, Theorem 2 applies
directly and yields new insights.

Example. [Improving Linear Contracts with Data] A principal hires an agent to work on a

project whose output is given by y = θe+ϵ, where θ ∈ R+ denotes the agent’s productivity,

e ∈ R+ the agent’s effort, and ϵ a random noise with E[ϵ] = 0. The agent’s effort cost is

c(e) = ke2/2 for some k > 0.

The principal faces uncertainty about the agent’s productivity. Let Θ ⊆ R+ denote

the set of possible productivity levels and P ⊆ ∆(Θ) the principal’s initial belief set. The

principal’s objective is to choose a robustly optimal linear contract to offer the agent, given

P and a possible revision using data from past projects.

A linear contract specifies a base wage α ∈ R and a share β ∈ [0, 1] of output. Given

(α, β), the agent chooses effort e to maximize Eϵ

[
α + β(θe + ϵ) − ke2/2

]
, yielding the

optimal effort e∗(θ, α, β) = βθ/k ≥ 0. Thus, given (α, β) and θ, the agent’s expected

payoff is UA(θ;α, β) = α + β2θ2/2k and the principal’s expected payoff is

π(α,β)(θ) = Eϵ

[
(1− β)(θe∗(θ, α, β) + ϵ)− α

]
=
β(1− β)

k
θ2 − α.

Let u0 : Θ → R denote the agent’s outside-option payoff. Under robustness consider-

ations, the principal restricts attention to contracts that satisfy individual rationality (IR)
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uniformly across all types.13 This pins down contracts to those satisfying

α ≥ sup
θ∈Θ

(
u0(θ)−

β2θ2

2k

)
≡ αmin(β).

Because the principal’s payoff is decreasing in α, it is without loss to focus on α = αmin(β).

Thus, the principal’s expected payoff from a linear contract with share β becomes

πβ(θ) =
β(1− β)

k
θ2 − αmin(β) ≡ λβ g(θ) + cβ.

This implies that choosing among feasible contracts (i.e., among β ∈ [0, 1]) is to choose

among acts πβ that are non-negative affine transformations of the common act g(θ) = θ2,

i.e., a monotone decision problem.

By Theorem 2, if the principal revises the initial belief set P about the agent’s produc-

tivity to a truth-accommodating refinement using data, the resulting data-revised contract

is guaranteed to yield a higher expected payoff than the benchmark contract regardless of

the true productivity distribution.

The linear-contract example illustrates how monotone decision problems can arise in
economic settings. The key is to identify a decision problem where all available options can
be represented as non-negative affine transformations of a common act. In this example, the
assumption of linear contracts is essential for representing the principal’s decision problem
as monotone. This assumption may be partially justified by the prominent role of linear
contracts under robustness concerns (Carroll, 2015; Carroll and Meng, 2016). Neverthe-
less, to extend the observations here to more contracting environments, the generalizations
identified in the next section are useful.

3.2 Monotone-Like Decision Problems

Theorem 2 identifies monotonicity as a sufficient condition for a truth-accommodating re-
finement to guarantee objective improvement when P is arbitrary and acts are functions
from states to payoffs. Its core intuition, in fact, extends more broadly as additional struc-
ture is imposed on either the initial set or the acts. Notice the key force behind Theorem 2
is two-fold: (i) all acts share a common worst-case DGP, and (ii) a truth-accommodating

13The uniform IR condition provides one natural way to ensure that the linear-contract problem is mono-
tone. Nevertheless, the monotone structure can also be preserved under alternative IR formulations, provided
that the set of participating types remains invariant across contracts.
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refinement shifts the robust decision towards higher payoffs under every DGP in the revised
set, thereby ensuring an objective improvement regardless of which DGP is the truth. In
this section, I illustrate that these two forces can be found in several alternative formulations
that are relevant in applications.

3.2.1 Monotone Decision Problems Under FOSD

Fix an order on Ω. Say that P is FOSD-comparable if all DGPs in P are totally ordered by
first-order stochastic dominance with respect to this order. A decision problem D is mono-
tone under FOSD if, under the same order on Ω, every act in D is increasing and for any
f, g ∈ D, the difference f − g is monotone (either increasing or decreasing). This require-
ment is weaker than Definition 3 as it does not restrict acts to be affine transformation of
one another. Nevertheless, it preserves the two forces identified above and thus guarantees
objective improvement under truth-accommodating refinements.

Corollary 1. Fix an order on Ω and suppose P is FOSD-comparable. If the data-revised

set is a truth-accommodating refinement, then the data revision provides objective improve-

ment in all decision problems that are monotone under FOSD.

To see why, notice when P is FOSD-comparable, all increasing acts share the same
worst-case DGP. If P(ωN) is a truth-accommodating refinement, then the true DGP P ∗

dominates the common worst-case DGP P1 in P(ωN), which in turn dominates the com-
mon worst-case DGP P2 in P . Let f = c(D) and g = c(D,ωN). It follows thatW (f, P2) ≤
W (g, P2) and W (g, P1) > W (f, P1). Let h = g − f and by monotonicity, h must be
increasing. Hence W (h, P ∗) ≥ W (h, P1) > 0, which implies the desired objective im-
provement.

Example (Improving (Non-Linear) Contracts with Data). Continuing the previous exam-

ple, but additionally suppose the principal’s initial knowledge P is FOSD-comparable with

respect to Θ ⊆ R+. This additional structure allows the principal to consider more gen-

eral contracts beyond linear ones while still being able to guarantee objective improvement

under truth-accommodating refinements.

Concretely, let Θ = [θ, θ] ⊆ R+ and suppose the principal expands the contract space

to include the following quadratic form of contracts:

w(β,γ)(y) = αmin(β, γ) + βy +
γ

2
y2,
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with β ∈ [0, 1], γ < (1−β)k/θ2, and αmin(β, γ) the minimal base wage satisfying uniform

IR. For simplicity, let ϵ ≡ 0. The upper bound on γ ensures that e∗(θ, β, γ) = βθ/(k−γθ2)
is always well-defined and the principal’s payoff,

π(β,γ)(θ) =
(1− β)βθ2

k − γθ2
− γβ2θ4

2(k − γθ2)2
− αmin(β, γ),

is increasing in θ. However, it is not necessarily true that for any two feasible contracts

(β, γ) and (β′, γ′), the difference π(β,γ)(θ)−π(β′,γ′)(θ) is monotone in θ. Nevertheless, if the

principal’s optimal contracts before and after data revision are such that this difference is

monotone in θ, then objective improvement can be established by examining only these two

contracts: by Corollary 1, objective improvement holds in the decision problem restricted

to this pair. Since the principal in fact selects these same two contracts in the full problem,

enlarging the contract space to include additional contracts that are not chosen does not

affect the objective-improvement conclusion.

3.2.2 Monotone Moment Decision Problems

In fields such as information design (Gentzkow and Kamenica, 2016; Kolotilin et al., 2017;
Dworczak and Martini, 2019), among others, decision problems are sometimes modeled as
choosing among options whose payoffs depend on the distribution over states only through
a scalar moment (e.g., the mean). Formally, fix a bounded measurable map m : ΩN → R
and write m(P ) ≡ EP [m(ω)]. A moment act is a function f : R → R that assigns payoff
f(m(P )) under distribution P . Note that while every (state–contingent) act induces an
expectation under each P , not every moment act corresponds to such a state–contingent
act, especially when f is nonlinear in the moment (e.g., f(x) = x2).

A decision problemD is a monotone moment decision problem if all acts are increas-
ing moment acts and single crossing holds: for all f, g ∈ D, if f(x) ≥ g(x) at some x,
then f(x′) ≥ g(x′) for all x′ ≥ x. As before, these conditions ensure the same two forces
identified above. The following corollary summarizes the conclusion.

Corollary 2. If the data-revised set is a truth-accommodating refinement, then the data

revision provides objective improvement in all monotone moment decision problems.

Example (Improving Linear Contracts with Data Under Generalized Preferences). Con-

tinuing the linear-contract example, another key assumption that makes the principal’s

problem monotone is the principal’s payoff form. Allowing the principal’s preference to
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depend non-linearly on the expected output but still linear in the expected payment would

generally break the monotonicity as in Definition 3. Specifically, let u : R → R be an in-

creasing function such that the principal’s payoff under a linear contract (α, β) ∈ R×[0, 1]

and a distribution P ∈ ∆(Θ) is

π(α,β)(P ) = u

(
β

k
EP [θ

2]

)
− β2

k
EP [θ

2]− α.

Let m(P ) = EP [θ
2], then π(α,β) is in the form of a moment act. When u(·) is twice differ-

entiable, u′(z) ≥ 1 and u′(z) + zu′′(z) ≥ 2 on the relevant range of moments is sufficient

for all π(α,β) to be increasing and pairwise single-crossing in m(P ). Then by Corollary 2,

again, a truth-accommodating refinement guarantees objective improvement in choosing

among linear contracts.

Monotone decision problems under FOSD and monotone moment decision problems
illustrate two distinct yet complementary directions for generalizing the notion of mono-
tonicity while preserving the two key forces underlying Theorem 2. As emphasized at the
beginning, within any specific decision context, whenever these two forces are present, a
truth-accommodating refinement guarantees objective improvement.

3.3 Beyond Monotonicity

Outside the monotone and monotone-like classes identified above, where a common worst
case and a directional monotonicity of payoff differences obtain, the guarantee that truth-
accommodating refinements yield objective improvement can break down. The next result
shows that this failure is robust: it could arise for arbitrary non-singleton refinements, or
arbitrary non-monotone binary decision problems.

Theorem 3. The following statements are true.

(i) For any non-singleton data-revised set P(ωN) that refines an initial set P , there exists

some P ∗ ∈ P(ωN) and a non-monotone decision problem D such that

W (c(D,ωN), P ∗) < W (c(D), P ∗).

(ii) For all non-monotone binary decision problem D with finitely-based acts f1 and f2, if

there exists P ̸= P ′ ∈ ∆indep(Ω) such that W (f1, P ) > W (f2, P ), and W (f1, P
′) <
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W (f2, P
′), then there exists an initial set P , a data-revised set P(ωN), and a true

DGP P ∗ such that P(ωN) is a truth-accommodating refinement, yet

W (c(D,ωN), P ∗) < W (c(D), P ∗).

Theorem 3 identifies two different impossibility directions for extending sufficiency
beyond monotone decision problems. Part (i) rules out any guarantee based solely on the
refinement itself: for every non–singleton refinement P(ωN) of P there is a true DGP
and a non-monotone problem for which the data-revised choice underperforms the bench-
mark. Part (ii) emphasizes that there is no particular way of deviating from monotonicity
that maintains sufficiency.14 In other words, monotonicity is not merely sufficient; it is
essentially the boundary for when a truth-accommodating refinement guarantees objective
improvement.

To gain some intuition of why without monotonicity, a truth-accommodating refinement
could lead to a strictly worse decision, consider the following example.

Example (Introductory Example continued). Decision Problem II. Netflix decides whether

to include (i) or remove (r) the movie from their recommendations. The key difference from

Decision Problem I is that the two actions now rank the states in opposite ways: removing

the movie yields a higher payoff when users dislike it, whereas including it yields a higher

payoff when users like it. Numerically, let the payoffs be i(U) = 1, i(D) = −1, r(U) = 0,

and r(D) = 1. Because the two alternatives rank the two states differently, this decision

problem is non-monotone.

In this case, Netflix’s benchmark decision is to choose r. If Netflix revises the initial

belief using the empirical distribution method described in the introduction, then their data-

revised decision will be r when the true DGP is (1/3)∞ and i when the true DGP belongs

to the set {3/5, 1}∞. However, if the true DGP is (3/5)∞ ∈ {3/5, 1}∞, the expected payoff

of i is 1/5, strictly lower than the expected payoff of r, equal to 2/5.

In Decision Problem II, the two acts rank the two states differently. While a higher
probability of U implies a “higher” optimal act, it does not necessarily lead to a higher
expected payoff. This non-monotonicity invalidates the previous intuition. In this case, the

14The statement restricts to finitely-based acts to avoid a small caveat involving tail events. See Remark A.1
in the proof for details. In addition, similar negative results can be stated for non-binary decision problems
as the argument involves only two acts, those that are chosen by the benchmark and data-revised decisions.
The presence of other acts only complicates the construction.
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worst-case DGPs for the two acts are those assigning the lowest probability to U and D,
respectively. While a truth-accommodating refinement still ensures that the lowest proba-
bilities of U andD in the data-revised set are greater than those in the initial set but less than
the true probabilities, the different levels of probability increase may lead the data-revised
decision to be further away from the exact optimal act.

Decision Problem II illustrates one direction where a decision problem can deviate from
monotonicity. For all the other directions, see the example in the proof of Theorem 3 for
an illustration.

3.4 Impossibility of Objective Improvement in All Decisions

Are there stronger conditions than truth-accommodating refinements that could guarantee
objective improvement beyond monotone decision problems? This section provides a neg-
ative answer when considering the set of all decision problems, i.e., when C = D.

Obviously, a sufficient condition is when P ∗ is uniquely identified from ωN and P is
not a singleton. In this case, by letting P(ωN) = {P ∗}, the DM’s data-revised decision
is exactly optimal against P ∗, thus always improves. However, revising a non-singleton
initial set to a singleton set containing the true DGP is not always feasible, especially when
the possible DGPs can be non-identical. When the data-revised set is not a singleton, the
following theorem shows that objective improvement in all decision problems requires the
true DGP to be effectively uniquely identified.

Theorem 4. A data revision provides objective improvement in all decision problems if and

only if there exists α ∈ (0, 1] such that

co(P(ωN)∞N ) = αP ∗∞
N + (1− α)co(P∞

N ).

The condition co(P(ωN)∞N ) = αP ∗∞
N +(1−α)co(P∞

N ) says that, after taking the closed
convex hull of future marginals, the data-revised set needs to be a convex combination of
the initial set and the true DGP. Observe that the only way to form such a data-revised set
requires knowing exactly what P ∗ is. But if it is the case, the DM should just let {P ∗} be
their data-revised set. On the other hand, if co(P(ωN)∞N ) = αP ∗∞

N + (1 − α)co(P∞
N ) for

some α ∈ (0, 1], then the same cannot hold for any other P and α whenever P∞
N ̸= P ∗∞

N .
This can be seen by considering the probability of any arbitrary event. This impossibility
thus leads to the following corollary.
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Corollary 3. Any given data-revised set can provide objective improvement in all decision

problems under at most one DGP (up to the same marginal over future states).

Given Corollary 3, if there are multiple DGPs the DM can by no means distinguish
using the sample data (like the ones in the introductory example), then no data-revised set
would be able to guarantee objective improvement in all decision problems under all of

them.
Crucially, a truth-accommodating refinement does not have this issue: A data-revised

set continues to be a truth-accommodating refinement no matter which DGP accommo-
dated by it turns out to be the truth. Therefore, Theorem 2 indeed further implies that the
objective improvement can be guaranteed simultaneously under multiple DGPs, contrast-
ing to the conclusion in Corollary 3.

In addition, a truth-accommodating refinement can also provide a weaker improvement
guarantee in all decision problems:

Proposition 1. If the data-revised set P(ωN) is a truth-accommodating refinement, then

for all D ∈ D,

W (c(D,ωN), P ∗) ≥ min
P∈P

W (c(D), P ),

and the inequality is strict for some D ∈ D.

In words, the expected payoff from the data-revised decision is never lower than the
guaranteed payoff of the benchmark decision. Hence, whenever the revision rule consti-
tutes a truth-accommodating refinement, the DM would never prefer to forgo the opportu-
nity to revise their decision using data in exchange for the benchmark’s certainty-equivalent
payoff. This improvement guarantee is relatively weak but not trivial: a misled data-revised
decision could be objectively worse than this certainty equivalent. Truth accommodation
ensures that it cannot happen. In other words, a truth-accommodating refinement guaran-
tees that learning from data is always valuable relative to receiving the ex-ante certainty
equivalent payoff, providing an additional rationale for adopting revision rules that accom-
modate the truth.

As a final remark, all results in this section also apply when comparing two data-revised
sets, say P1(ω

N) and P2(ω
N). When both sets accommodate the truth and P1(ω

N) is
a refinement of P2(ω

N), all conclusions about objective improvement holds by viewing
P1(ω

N) as a truth-accommodating refinement of P2(ω
N).
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4 Revision Rules that Accommodate the Truth

As established in the previous section, for improving robust decisions, it is necessary and
sometimes sufficient to accommodate the true DGP in revising the initial set (the refinement
part only guarantees it to be sometimes strict). Define a revision rule as the mapping from
an initial set P and sample data ωN to a data-revised set P(ωN). When the sample size is
unbounded, the following definition formalizes a notion of accommodating the truth in the
asymptotic sense.

Definition 4. A revision rule accommodates the truth asymptotically almost surely if, for

any initial set P , for every P ∗ ∈ P , and for P ∗-almost every ω ∈ Ω, there exists N̄(ω)

such that, for all N ≥ N̄(ω), the data-revised set P(ωN) accommodates the DGP P ∗.

This definition says that, regardless of which possible DGP governs the uncertainty,
the revision rule ensures that, with a sufficient amount of data, the data-revised set ac-
commodates the true DGP almost surely. Therefore, whenever accommodating the truth is
sufficient for objective improvement, such improvements are also achieved asymptotically
almost surely.

Likelihood-based rules have been shown in the introductory example to violate this
property. Here, I propose a revision rule based on empirical distributions: For any sample
data ωN , let Φ(ωN) ∈ ∆(S) denote the empirical distribution, i.e., for any outcome s ∈ S,
Φ(ωN)(s) ≡ N−1

∑N
i=1 I{ωi = s}. For any P ∈ ∆indep(Ω) and for any N , the average

of sample marginals, P̄N ∈ ∆(S), is defined to be the distribution over S given by the
average mixture of the marginal distributions over each component of the sample states,
i.e., P̄N ≡ N−1

∑N
i=1 Pi. For any p, q ∈ ∆(S), let ρ(p, q) denote the sup-norm distance.

Definition 5. The data-revised sets are obtained by the empirical distribution method if,

for some pre-specified ϵ > 0 and for every ωN ,

P(ωN) =
{
P ∈ P : ρ(P̄N ,Φ(ωN)) < ϵ

}
.

The empirical distribution method is a formalization of the simple heuristic of retaining
a DGP if its average of sample marginals is close enough to the empirical distribution.
Such a heuristic can be used when DGPs are i.i.d., for it happens to coincide with retaining
DGPs that maximize the likelihood in this special case. With possible non-identical DGPs,
while maximum likelihood is no longer useful, this heuristic remains valid.
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Theorem 5. For all ϵ > 0, the empirical distribution method accommodates the truth

asymptotically almost surely.

The proof of Theorem 5 is to verify that Kolmogorov’s strong law of large numbers
holds. This also suggests that the independence assumption is not crucial for this result.
As long as there is a version of the strong law of large numbers, one can obtain the same
conclusion. Notable cases include when the DGPs satisfy Markov property or are weakly
dependent (De Jong, 1995).

In addition, the empirical distribution method is not the only revision rule that accom-
modates the truth asymptotically almost surely. For instance, when the odd and even experi-
ments are known to have different characteristics, one may apply the empirical distribution
method separately to the odd and even experiments to obtain a potentially more refined
data-revised set. Such revision rules, however, typically need to be tailored to the specific
structure in a case-by-case manner. In contrast, the empirical distribution method stands
out for its simplicity and general applicability.

4.1 Accommodating the Truth with Finite Sample

As Theorem 5 holds for all ϵ > 0, letting ϵ → 0 obtains the theoretic limit of the data-
revised sets under the empirical distribution method. For applications with finite samples,
the standard approach is to derive the ϵ-bound as a function of the sample size that ensures
a pre-specified asymptotic probability of accommodating the truth.15 This section develops
a novel and simple method to achieve this. First, define the following finite-sample notion
of accommodating the truth.

Definition 6. A revision rule accommodates the truth with an asymptotic level 1 − α if,

for any initial set P and for every P ∗ ∈ P ,

lim inf
N→∞

P ∗({ωN : P(ωN) accommodates P ∗}) ≥ 1− α.

A revision rule satisfying Definition 6 ensures that, regardless of which DGP governs
the data, the data-revised set accommodates the true DGP with asymptotic probability at
least 1− α. In particular, the level 1− α is understood uniformly — the probability bound

15With a finite sample, the only revision rule that accommodates the truth almost surely is to keep using
the initial set, because of the full-support assumption. Thus, the only meaningful notion of accommodating
the truth with a finite sample is the probabilistic approach, which is also a standard practice in statistical
inferences.
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holds uniformly over all possible DGPs in P . Consequently, objective improvement is
guaranteed with at least the same asymptotic probability whenever accommodating the
truth is sufficient.

Definition 6 effectively requires the data-revised sets to serve as consistent confidence

regions for the true DGP.16 One way to ensure this property is to construct the confidence
regions directly and use them as the data-revised sets.

Constructing confidence regions is theoretically straightforward exploiting the well-
known duality with hypothesis tests. For any P ∈ P , consider testing the null hypothesis
P ∗ = P , against the unrestricted alternative P ∗ ̸= P . LetAN,α(P ) ⊆ SN denote the region

of acceptance: the set of sample data under which the null cannot be rejected. Then find
regions that satisfy

lim inf
N→∞

P (Aα,N(P )) ≥ 1− α,

that is, the probability of accepting the null when it is true is at least 1− α asymptotically.
Given any data ωN , construct the data-revised set as

P(ωN) = {P ∈ P : ωN ∈ Aα,N(P )}.

Such data-revised sets contain the true DGP with asymptotic probability 1− α, uniformly
across all P in P .

When all possible DGPs are i.i.d., this construction is standard and tractable for two
convenient features. First, by the central limit theorem, the regions of acceptance can be
obtained from probability contours of the corresponding multivariate Gaussian approxi-
mations. The mean vectors and covariance matrices depend only on the unique marginal
distribution and thus remain fixed as the sample size grows. Second, because each i.i.d.
distribution is uniquely determined by its marginal, the number of tests remains fixed re-
gardless of the sample size.

Both features do not carry over when DGPs may be non-identical. First, in this case,
both the mean vectors and covariance matrices depend on all marginals across sample
states. As a result, for every sample size, both need to be recomputed even for the same
DGP. Second, a non-identical DGP is determined by all its marginals, so each additional
observation increases the number of tests.

To overcome these difficulties, I present in the following a novel method for construct-
ing confidence regions for non-identical DGPs. This method retains the simplicity of the

16The coverage is in the weaker sense of accommodating but the difference is unimportant.
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i.i.d. case while guaranteeing that the resulting confidence regions cover the true non-
identical DGP with at least the required asymptotic level.

Formally, for any p ∈ ∆(S), let p∞ denote the i.i.d. distribution over Ω with marginal
p. Let A∗

N,α(p
∞) denote its region of acceptance with asymptotic level 1 − α, constructed

using the corresponding Gaussian approximation.17 For any P ∈ ∆indep(Ω), recall P̄N ∈
∆(S) denotes the average of sample marginals. Let A∗

N,α((P̄
N)∞) denote the region of

acceptance constructed using the Gaussian approximation of the i.i.d. distribution (P̄N)∞.
Consider the following revision rule:

Definition 7. The data-revised sets are obtained using the augmented i.i.d. test with

asymptotic level 1− α if, for every ωN ,

P(ωN) =
{
P ∈ P : ωN ∈ A∗

N,α((P̄
N)∞)

}
.

Intuitively, the augmented i.i.d. test follows a two-step procedure:

(i) For any sample data ωN , construct a confidence region as if the initial set consists of
all i.i.d. DGPs.

(ii) For each DGP in the initial set, retain it in the data-revised set if its average of sample
marginals coincides with the marginal of some i.i.d. DGP in the previous confidence
region.

Notice the first step is the standard procedure for constructing confidence regions from
i.i.d. sample data. The essential departure is the second step, which augments the i.i.d.
confidence region by also including the possible non-identical DGPs. Importantly, this
augmentation is achieved through a straightforward comparison, adding virtually no com-
putational difficulty. Therefore, implementing the augmented i.i.d. test is as tractable as
conventional statistical inferences based on i.i.d. samples.

Theorem 6. The augmented i.i.d. test with asymptotic level 1− α accommodates the truth

with the same asymptotic level.

The proof of this theorem relies on a key observation: For all P ∈ ∆indep(Ω), for all N
and α,

A∗
N,α(P ) ⊆ A∗

N,α((P̄
N)∞),

17The exact form is standard and is given by equation (A.5) in the appendix, with additional notations.
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which further implies that

P (A∗
N,α(P )) ≤ P (A∗

N,α((P̄
N)∞)).

Therefore, when testing the null hypothesis P ∗ = P , using the region of acceptance
A∗

N,α((P̄
N)∞), the probability of accepting P when it is true is at least greater than the

probability when using A∗
N,α(P ). The latter probability is, by construction, asymptotically

greater than 1− α.
The key relation, A∗

N,α(P ) ⊆ A∗
N,α((P̄

N)∞), is shown in Lemma A.2 by deriving a
result relating the average covariance matrices of the two distributions, P and (P̄N)∞.
Specifically, subtracting the average covariance matrix of PN from that of ((P̄N)∞)N yields
a positive semi-definite matrix. This result generalizes a well-known variance inequality
for mixtures of binomial distributions (Wang, 1993) to the multinomial case.18

Remark 1. One potential concern is that computing the probability contours of multivari-

ate Gaussian distributions may be difficult when |S| is large. A practical alternative is to

construct a Bonferroni-type confidence region by forming confidence intervals for the prob-

ability of each outcome s, each with confidence level 1 − α/(|S| − 1). The intersection of

all such confidence intervals then yields a confidence region with overall confidence level

1−α. However, this region is generally more conservative than that obtained directly from

the multivariate Gaussian distribution. Moreover, using the corresponding result in Wang

(1993) for binomial distributions, one can show that the Bonferroni-type confidence region

constructed from i.i.d. distributions guarantees at least the same coverage probability for

non-identical distributions.

5 Applications with Parametric Models

This section illustrates how the theoretical results translate into familiar statistical and eco-
nomic settings. In particular, it studies two applications where the initial sets are given by
specific parametric models. The first application showcases a setting where the data-revised
sets obtained under the augmented i.i.d. test have a closed-form solution, and are closely
related to the standard Wilson confidence interval. The second application highlights new

18Specifically, the average variance of an i.i.d. binomial distribution is always weakly greater than the
average variance of a non-identical binomial distribution whose average mean is the same as the i.i.d. distri-
bution.
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findings in a commonly studied model of learning under ambiguity. These applications
confirm the practical relevance of the proposed revision rules and the associated theoretical
results.

5.1 Bernoulli Model with Ambiguous Nuisance Parameters

This model is a generalization of the one studied in Walley (1991). Suppose the DM faces
a sequence of coin flips, with outcome space Ω = {H,T}∞, representing heads and tails.
The probability of getting a head from the i-th coin flip is determined by both a structural

parameter θ ∈ [0, 1] and a nuisance parameter ψi ∈ [0, 1]:

(1− δ)θ + δψi ∈ [0, 1],

for some fixed δ ∈ [0, 1]. The structural parameter is common across all flips and can be
interpreted as a systematic characteristic of the coins. But each coin flip is also affected by
its idiosyncratic feature captured by ψi. Throughout, I use the probability of H to represent
a probability distribution over {H,T}. Because each ψi is only known to lie in [0, 1], each
structural parameter θ corresponds to a set of possible DGPs:

Pθ = {P ∈ ∆indep(Ω) : Pi ∈ [(1− δ)θ, (1− δ)θ + δ],∀i}.

Let Θ = [0, 1] denote the set of structural parameters. The initial set of DGPs is therefore
P = ∪θ∈ΘPθ. The DM observes outcomes ofN coin flips. Their goal is to estimate the true
structural parameter and make a set-valued prediction for the probability of getting a head
in the next flip. The benchmark estimate is simply the initial set of parameters Θ = [0, 1],
so the benchmark prediction is PN+1 = [0, 1].

Consider the DM’s asymptotic prediction using the empirical distribution method. For
simplicity, I ignore the pre-specified ϵ by taking it to be arbitrarily small. Then the data-
revised set is given by

P(ωN) =

{
P ∈ P : N−1

N∑
i=1

Pi = Φ(ωN)

}
.

Let the DM’s data-revised estimate of the structural parameter be given by

Θ(ωN) ≡ {θ ∈ Θ : Pθ ∩ P(ωN) ̸= ∅},
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i.e., a structural parameter is considered possible whenever there is a corresponding DGP
retained in P(ωN). For any θ ∈ Θ, there exists P ∈ Pθ satisfying the above condition if
and only if Φ(ωN) ∈ [(1− δ)θ, (1− δ)θ + δ].

As a result, it follows that

Θ(ωN) =

[
max

{
Φ(ωN)− δ

1− δ
, 0

}
,min

{
Φ(ωN)

1− δ
, 1

}]
.

Notice the data-revised prediction is also completely determined by the data-revised esti-
mate of the structural parameter and is given by

P(ωN)N+1 =
[
max

{
Φ(ωN)− δ, 0

}
,min

{
Φ(ωN) + δ, 1

}]
.

Intuitively, the asymptotic prediction under the empirical distribution method is a “δ-fattening”
of the observed empirical frequency of heads.

Next, consider the finite-sample estimate and prediction at asymptotic level 1−α using
the augmented i.i.d. test. For any sample data ωN , the first step is to construct the confi-
dence interval as if the underlying DGPs were i.i.d. binomial distributions. Specifically,
the corresponding confidence interval is the Wilson Interval.19 Let zα/2 denote the upper
100(α/2)% quantile of the standard normal distribution. Let [W (ωN),W (ωN)] denote the
Wilson Interval which has the following closed-form expressions:

W (ωN) =
NΦ(ωN) + z2α/2/2

N + z2α/2
+
zα/2N

1/2

N + z2α/2

(
Φ(ωN)(1− Φ(ωN)) + z2α/2/(4N)

)1/2
;

W (ωN) =
NΦ(ωN) + z2α/2/2

N + z2α/2
−
zα/2N

1/2

N + z2α/2

(
Φ(ωN)(1− Φ(ωN)) + z2α/2/(4N)

)1/2
.

Given the i.i.d. confidence interval, the second step is to consider non-identical DGPs
whose average of sample marginals falls into this confidence interval: A structural param-
eter θ is retained in the data-revised estimate if and only if [(1 − δ)θ, (1 − δ)θ + δ] ∩
[W (ωN),W (ωN)] ̸= ∅. Hence, the data-revised estimate is

Θ(ωN) =

[
max

{
W (ωN)− δ

1− δ
, 0

}
,min

{
W (ωN)

1− δ
, 1

}]
.

19Different from the probably more famous Wald Interval which uses the sample variance, Wilson Interval
is constructed by directly inverting the statistical tests, thus using the null variance. Wilson Interval has
considerably better asymptotic performance than the Wald Interval. See Brown et al. (2001) for a discussion.
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Similarly, the data-revised prediction in this case is

P(ωN)N+1 =
[
max

{
W (ωN)− δ, 0

}
,min

{
W (ωN) + δ, 1

}]
.

Notice the prediction is again a δ-fattening of the Wilson Interval. Therefore, The resulting
expressions are not only analytically tractable but also intuitively interpretable.

5.2 Gaussian Signals with Ambiguous Variances

Prior-by-prior or full-Bayesian updating is the most commonly used update rule in models
of learning under ambiguity in the literature. However, its asymptotic result is often hard
to derive and is known only in specific parametric models. This section revisits one such
model from Reshidi et al. (2025) and shows that applying the empirical distribution method
yields a simpler analysis and entirely different conclusions.

In this model, the DM aims to learn the state of the world θ ∈ Θ ≡ R by observing a
countably infinite sequence of signals denoted by {xi}∞i=1. Each xi is a Gaussian random
variable with mean θ and variance σ2

i , and let gi(θ, σi) denote its probability density func-
tion. The signals are mutually independent, but each σi is only known to lie in [σ, σ]. Thus,
the DM observes a sequence of independent but possibly heterogeneous Gaussian random
variables.

Formally, for each state θ, let

Pθ =

{
∞∏
i=1

gi(θ, σi) : σi ∈ [σ, σ],∀i

}

denote the set of possible DGPs over the signal sequence. The initial set is P = ∪θ∈ΘPθ.

For every N ∈ N, let x̂N ≡ (x̂1, x̂2, · · · , x̂N) be a sequence of signal realizations and let
P(x̂N) denote the data-revised set of DGPs. Because the DM’s goal is to learn the true
state, define

Θ(x̂N) ≡ {θ ∈ Θ : Pθ ∩ P(x̂N) ̸= ∅}

as the set of states consistent with the data-revised set of DGPs.
Directly applying full Bayesian updating here would amount to retain all possible

DGPs, implying P(x̂N) ≡ P and hence Θ(x̂N) ≡ Θ for all x̂N . In Reshidi et al. (2025),
they apply full Bayesian updating differently by assuming a prior µ over Θ. Then apply-
ing full Bayesian updating is to apply Bayes’ rule to update µ under each possible DGP.
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Specifically, for each θ, let Pθ ∈ Pθ denote a specific DGP, the posterior probability

µ(θ|x̂N) = µ(θ)Pθ(x̂
N)∫

Θ
µ(θ′)Pθ′(x̂N)dµ(θ′)

.

This yields a set of posterior beliefs over Θ.20 Their main result (Theorem 1) shows that in
any state θ and some possible DGP, the set of posteriors converges almost surely to a set
of degenerate distributions over a non-singleton set of states. That is, ambiguity does not
vanish asymptotically.

Consider revising the initial set using the empirical distribution method. Because only
the mean matters, it suffices to consider their sample mean.

Definition 8. The revision of states is obtained by the sample mean method if, for some

pre-specified ϵ > 0, and for every x̂N ,

Θ(x̂N) =

{
θ ∈ Θ :

∣∣∣∣∣N−1

N∑
i=1

x̂i − θ

∣∣∣∣∣ < ϵ

}
.

As in the empirical distribution method, Θ(x̂N) retains a state if it is close enough to
the sample mean. Because the mean of each marginal distribution equal to θ, applying
Kolmogorov’s strong law of large numbers yields the following result.

Proposition 2. For any θ∗ ∈ Θ and any P ∗ ∈ Pθ∗ , the revision of states obtained by the

sample mean method with any ϵ > 0 contains the true state asymptotically almost surely,

i.e., for any ϵ > 0,

P ∗
(
x̂ : lim

N→∞
θ∗ ∈ Θ(x̂N)

)
= 1.

As the conclusion holds for any ϵ > 0, taking ϵ arbitrarily small makes the revised set of
states arbitrarily precise. Thus, even with Gaussian signals that have unknown and possibly
heterogeneous variances, the true state can still be identified asymptotically almost surely.
This stands in sharp contrast to full Bayesian updating, under which ambiguity persists.

The key factor enabling asymptotic identification here is that all Gaussian signals share
the same mean. When the means themselves are also ambiguous, the sample-mean method
may still yield asymptotic ambiguity over a non-vanishing set of states. Nonetheless, the

20This way of applying full Bayesian updating can be incorporated into the present framework by letting
the state space be Θ× S∞ and allowing dependence in DGPs. Applying (B.1) in Appendix B yields exactly
the same posterior distribution over Θ.
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key here is that this asymptotic prediction is obtained straightforwardly with the sample-
mean method, whereas the corresponding asymptotic result for full-Bayesian updating in
this setting remains unknown.

6 Related Literature

The decision environment formulated in this paper is closely related to some in the literature
on decisions under ambiguity. In particular, it directly generalizes the setting studied by Ep-
stein and Schneider (2007). They assume the DM applies maximum likelihood updating
to revise the initial set. The present paper highlights possible concerns with this approach.
Epstein et al. (2016) develop robust confidence regions when the possible data-generating
processes are belief functions. Belief functions impose restrictions on the possible marginal
distributions. In contrast, the environment studied here allows for arbitrary marginals. But
the main conceptual difference from their paper and other papers on asymptotic learning
under ambiguity, such as Marinacci (2002) and Marinacci and Massari (2019), is that the
present paper emphasizes implications for decision making in addition to asymptotic learn-
ing.

This paper also contributes to the literature on dynamic decisions under ambiguity by
proposing new rules for revising or updating sets of distributions. See Gilboa and Marinacci
(2013) and Cheng (2022) for recent developments. The essential departure of the present
paper from this literature is that it evaluates decisions using an objective criterion. The
objective criterion leads to a characterization of accommodating-the-truth property, con-
ceptually analogous to statistical consistency. In this way, this paper draws a connection
between a classical concept from statistics and the theory of decisions under ambiguity, fol-
lowing the line of research by Cerreia-Vioglio et al. (2013) and Denti and Pomatto (2022).
This objective approach also resonates with some recent studies of misspecified learning
that evaluate performance according to an objective measure, such as Frick et al. (2024)
and He and Libgober (2025).

Finally, this paper develops a useful augmenting technique for making inferences in
the presence of independent but non-identical distributions. In essence, this technique can
be applied on top of standard statistical procedures developed under the i.i.d. assumption.
The data-revised set naturally serves as a set-valued identification object and is therefore re-
lated to the partial identification literature (see surveys by Tamer (2010), Canay and Shaikh
(2017), and Molinari (2020)). In that literature, the decision environment is typically for-
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mulated so that the data-generating distribution is point identified, while the payoff-relevant
parameters are only partially identified, see, for example, Christensen et al. (2023). By
contrast, the present paper focuses on situations where the distribution itself is partially
identified and develops relevant inference methods for such settings.

A Proofs of Results

For ease of exposition, unless otherwise specified, I use the notations P , P(ωN), and
P to represent co(P)N∞, co(P(ωN)N∞), and P∞

N , respectively. Accordingly, a truth-
accommodating refinement is one that satisfies P ∗ ∈ P(ωN) ⫋ P .

A.1 Proof of Theorem 1

Proof. Suppose P(ωN) does not accommodate P ∗, i.e., P ∗ /∈ P(ωN). By the strong
separating hyperplane theorem (See, for example, Corollary 5.80 in Aliprantis and Border
(2006)), there exists a Σ∞

N -measurable bounded function f : ΩN → R and a real number
x ∈ R such that∫

ΩN

f(ω̃N)dP
∗(ω̃N) < x, and min

P∈P(ωN )

∫
ΩN

f(ω̃N)dP (ω̃N) > x.

Consider the basic decision problem D = {f, x}, the above inequalities imply that c(D) =

x, c(D,ωN) = f , but W (f, P ∗) < x = W (x, P ∗).

A.2 Proof of Theorem 2

Proof. The necessity is a direct consequence of Theorem 1 as basic decision problems are
monotone. The sufficiency is proved as follows.

Fix any initial set P . By definition, there exists g ∈ F such that for all f ∈ D,
f = λfg + cf for some λf ≥ 0 and cf ∈ R. Since for any f ∈ D and any P ∈ ∆(Ω),

W (f, P ) = λfW (g, P ) + cf ,

it follows that all f ∈ D and g share the same worst-case DGP that delivers the lowest
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W (g, P ). Based on this observation, further denote

[a, b] ≡
[
min
P∈P

W (g, P ),max
P∈P

W (g, P )

]
⊆ R,

[a′, b′] ≡
[

min
P∈P(ωN )

W (g, P ), max
P∈P(ωN )

W (g, P )

]
⊆ R,

p∗ ≡ W (g, P ∗) ∈ R.

Then P(ωN) is a truth-accommodating refinement of P implies that p∗ ∈ [a′, b′] ⊆ [a, b].
Denote c(D) = f1 and c(D,ωN) = f2. If f1 = f2, then the conclusion holds trivially.

Otherwise, it must hold that

λf1 · a+ cf1 ≥ λf2 · a+ cf2 ,

λf1 · a′ + cf1 < λf2 · a′ + cf2 .

The second inequality must be strict, otherwise, since f1 is a solution under the revised set,
the tie-breaking assumption forces c(D,ωN) = f1, contradicting c(D,ωN) = f2 ̸= f1.
Strict inequality further implies that a′ > a. Then, as λf1 and λf2 are both non-negative,
combining both inequalities yields λf2 > λf1 . Thus, for any p ≥ a′, it must hold that

λf1 · p+ cf1 < λf2 · p+ cf2 .

Therefore, as p∗ ≥ a′, it follows that W (c(D,ωN), P ∗) > W (c(D), P ∗).
To show the existence of a monotone decision problem where strict improvement oc-

curs, one can apply a separating hyperplane argument to construct a basic decision problem
with f1 ̸= f2.

A.3 Proof of Theorem 3

Proof. (i) This follows from Theorem 4. If P(ωN) refines P , there always exists P ∗ ∈
P(ωN) (for example, those on the boundary) such that the condition in Theorem 4 fails.
Then by Theorem 2, the decision problem where objective improvement fails must be a
non-monotone decision problem.

(ii) Let D = {f1, f2} ∈ D be a non-monotone decision problem with finitely-based
acts. For some finite M > N , let SM

N denote the finite set of experiments where both acts
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are measurable and let ωM
N = (ωN+1, · · · , ωM). For each P ∈ ∆indep(S

M
N ), identify it as

a vector (PN+1, · · · , PM) ∈ (∆(S))M−N ⊂ R(M−N)×|S|. Notice the set (∆(S))M−N is
convex and compact.21 Next, for j ∈ {1, 2}, the function

W (fj, P ) =
∑

ωM
N ∈SM

N

M∏
i=N+1

Pi(ωi)fj(ω
M
N ),

is continuous over (∆(S))M−N . Therefore, for each x ∈ (minωM
N
fj(ω

M
N ),maxωM

N
fj(ω

M
N )),

there exists a full support P ∈ ∆indep(S
M
N ) such that W (fj, P ) = x.

D is non-monotone implies both f1 and f2 are non-constant. Pick any ω̂N ∈ ΩN and
define

f̂j(ω̃N) = fj(ω̃N)− fj(ω̂N), for j ∈ {1, 2}.

Observe that D is monotone if and only if f̂1 and f̂2 are in the same ray, i.e., there exists
α > 0 such that f̂2 = αf̂1. Thus, when D is non-monotone, there are two possible cases:

Case 1: f̂1 and f̂2 are in the opposite ray, i.e., there exists α < 0 such that f̂2 = αf̂1.
Since SM

N is finite, all relevant acts and DGPs can be identified as vectors in a finite-
dimensional Euclidean space. Henceforth, I use the standard inner product ⟨P, f⟩ to denote
the expected payoffW (f, P ). First observe that, fix an f , any P ∈ ∆(SM

N ) can be uniquely
decomposed into P̂ and P̂⊥ such that

⟨P, f̂⟩ = ⟨P̂ , f̂⟩+ ⟨P̂⊥, f̂⟩ = ⟨P̂ , f̂⟩+ 0.

That is, P̂ is parallel to f̂ and P̂⊥ is orthogonal to f̂ . When f̂2 and f̂1 are in the opposite
ray, it follows that the same decomposition works for both f̂1 and f̂2. Thus, for any P ∈
∆indep(S

M
N ), let P̂ denote its component parallel to both f̂1 and f̂2, then

⟨P, f̂j⟩ = ⟨P̂ , f̂j⟩, for j ∈ {1, 2}.

And thus,
⟨P, fj⟩ = fj(ω̂N) + sgn(⟨P̂ , f̂j⟩)∥P̂∥ · ∥f̂j∥, for j ∈ {1, 2},

where sgn(⟨P̂ , f̂j⟩) is always opposite for f1 and f2.

21A convex combination in the space (∆(S))M−N is different from that in ∆indep(S
M
N ). The former

is a convex combination of the marginal distributions, while the latter is a convex combination of the joint
distributions. Thus, this convexity does not contradict the fact that ∆indep(S

M
N ) is not convex.
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Fix any initial set P that includes both P and P ′. Define the following set using f1:

{sgn(⟨P̂ , f̂1⟩)∥P̂∥ : P ∈ co(P)},

which is closed and convex, and thus can be represented by a closed interval [a, b] ⊆ R.
Then for any P ∈ P , let p ∈ [a, b] denote its corresponding element in [a, b] and notice

⟨P, f1⟩ = f1(ω̂N) + ∥f̂1∥p,

⟨P, f2⟩ = f2(ω̂N)− ∥f̂2∥p.

It further implies that a is the minimizer for f1 and b is the minimizer for f2. Let P1 and
P2 be the two minimizers in P corresponding to a and b, respectively. Suppose c(D) = f1,
the other case is symmetric.

As P, P ′ ∈ P , both acts can be the unique maximizer of W (f, P ) among P ∈ P , thus

f1(ω̂N) + ∥f̂1∥a < f2(ω̂N)− ∥f̂2∥a,

f1(ω̂N) + ∥f̂1∥b > f2(ω̂N)− ∥f̂2∥b.

Therefore, there then exists c ∈ (a, b) such that

f1(ω̂N) + ∥f̂1∥c = f2(ω̂N)− ∥f̂2∥c.

Since f1(ω̂N) + ∥f̂1∥c > f1(ω̂N) + ∥f̂1∥a, there further exists d ∈ (c, b) such that

f1(ω̂N) + ∥f̂1∥a < f2(ω̂N)− ∥f̂2∥d.

By continuity of ⟨P, f2⟩ in P , there exists P̃ ∈ ∆indep(S
M
N ) such that ⟨P̃ , f2⟩ − f2(ω̂N) =

−∥f̂2∥d, i.e., the data revised set P(ωN) = {P1, P̃}, after taking the closed and convex
hull, would correspond to [a, d] ⫋ [a, b]. The last inequality implies c(D,ωN) = f2.

Again by continuity, there exists P ∗ ∈ ∆indep(S
M
N ) that corresponds to some p∗ ∈ (c, d].

Further let the data-revised set be P(ωN) = {P1, P̃ , P
∗}, notice this does not change the

data-revised decision and accommodates P ∗. However,

f1(ω̂N) + ∥f̂1∥p∗ > f2(ω̂N)− ∥f̂2∥p∗,

i.e., W (c(D), P ∗) > W (c(D,ωN), P ∗).
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Case 2: f̂2 is not in the affine hull of f̂1. As W (f1, P ) > W (f2, P ) and W (f1, P
′) <

W (f2, P
′), by continuity, there exists P0 ∈ ∆indep(S

M
N ) such that W (f1, P0) = W (f2, P0).

For any P ∈ ∆indep(S
M
N ), decompose it into P̂ and P̂⊥ with respect to f̂2 so that

⟨P, f̂2⟩ = ⟨P̂ , f̂2⟩.

Then for f1, one has
⟨P, f̂1⟩ = ⟨P̂ , f̂1⟩+ ⟨P̂⊥, f̂1⟩,

where ⟨P̂⊥, f1⟩ ≠ 0 whenever P̂⊥ is non-zero.
Since P0 has full support, it lies in the interior of (∆indep(S

M
N )) (identified as the set

(∆(S))M−N ). Thus there always exists ϵ > 0 such that the open ball (in R(M−N)×|S|)
centered at P0 with radius ϵ is entirely contained in ∆indep(S

M
N ). Let P be a superset of this

open ball and suppose c(D) = f1, the other case is symmetric.
From the open ball, one can also find Pϵ such that

P̂ϵ = P̂0, and ⟨P̂⊥
ϵ , f̂1⟩ > ⟨P̂⊥

0 , f̂1⟩.

This further implies

⟨Pϵ, f1⟩ = f1(ω̂N) + ⟨P̂ϵ, f̂1⟩+ ⟨P̂⊥
ϵ , f̂1⟩

= f1(ω̂N) + ⟨P̂0, f̂1⟩+ ⟨P̂⊥
ϵ , f̂1⟩

> f1(ω̂N) + ⟨P̂0, f̂1⟩+ ⟨P̂⊥
0 , f̂1⟩

= ⟨P0, f1⟩ = ⟨P0, f2⟩ = f1(ω̂N) + ⟨P̂0, f̂2⟩

= f2(ω̂N) + ⟨P̂ϵ, f̂2⟩ = ⟨Pϵ, f2⟩.

Similarly, one can find P−ϵ in the open ball with the property that

⟨P−ϵ, f1⟩ < ⟨P0, f1⟩ = ⟨P0, f2⟩ = ⟨P−ϵ, f2⟩.

Then let the data-revised set be {P−ϵ, Pϵ} and let P ∗ = Pϵ. In this case, the data-revised
decision is c(D,ωN) = f2, but

W (f2, P
∗) = ⟨Pϵ, f2⟩ < ⟨Pϵ, f1⟩ = W (f1, P

∗),

i.e., the conclusion.
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The following example provides a simpler illustration of the main intuition in Case 2:

Example. Suppose D = {f1, f2} and all acts depend on a single experiment with three

possible outcomes, i.e., S = {s1, s2, s3}. Let f1 = (0, 2, 0) and f2 = (−1, 1, 1). f̂2 is

not in the affine hull of f̂1. In terms of the marginal distribution over S, let P = ∆(S),

P(ωN) = ∆({s2, s3}), and P ∗ = δs2 . Notice P(ωN) is a truth-accommodating refinement.

Then c(D) = f1, c(D,ωN) = f2, but W (f1, P
∗) = 2 > 1 = W (f2, P

∗).

Remark A.1. The assumption of finitely-based acts is used to embed ∆indep(S
M
N ) into

Euclidean space and show that W (f, P ) is continuous over ∆indep(S
M
N ). This continu-

ity breaks down when the acts are not finitely based, i.e., depend on tail events. By Kol-

mogorov’s zero-one law, all tail events have a probability of either 0 or 1, and thusW (f, P )

is no longer continuous in P .

In particular, consider a non-monotone decision problem where the two acts are bets

on and against a tail event A. This corresponds to Case 1 in the proof. For this decision

problem, however, all DGPs in P correspond to the two endpoints a and b and nothing

else. Therefore, if the data-revised set is a truth-accommodating refinement, then the data-

revised decision is either the same as the benchmark decision or exactly optimal under the

true DGP. In other words, a truth-accommodating refinement, “inconveniently”, leads to

an objective improvement in such a non-monotone decision problem. This fact, however,

does not generalize to all non-monotone problems with tail-event acts. Notice the previous

example is still true when replacing s1, s2 and s3 by some tail events. The assumption of

finitely-based acts is needed to simplify the statement in light of this subtlety.

A.4 Proof of Theorem 4

Proof. IF. The inequality W (c(D,ωN), P ∗) ≥ W (c(D), P ∗) is trivially true when the
data-revised and benchmark decisions are the same. Consider any D ∈ D where these two
are different, denote f = c(D) and f ′ = c(D,ωN). The condition in the theorem says that,
for some α ∈ (0, 1],

P(ωN) = αP ∗ + (1− α)P . (A.1)

By optimality of f and f ′ under P and P(ωN) respectively, one has

min
P∈P

∫
ΩN

f(ω̃N)dP (ω̃N) ≥ min
P∈P

∫
ΩN

f ′(ω̃N)dP (ω̃N), (A.2)
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and
min

P∈P(ωN )

∫
ΩN

f ′(ω̃N)dP (ω̃N) > min
P∈P(ωN )

∫
ΩN

f(ω̃N)dP (ω̃N), (A.3)

where the strict inequality is required by the tie-breaking assumption (Assumption 2) and
that f ̸= f ′. Substituting (A.1) into (A.3) yields,

α

∫
ΩN

f ′(ω̃N)dP
∗(ω̃N) + (1− α)min

P∈P

∫
ΩN

f ′(ω̃N)dP (ω̃N)

>α

∫
ΩN

f(ω̃N)dP
∗(ω̃N) + (1− α) min

P∈PN

∫
ΩN

f(ω̃N)dP (ω̃N).

Rearranging terms to get,

α

[∫
ΩN

f ′(ω̃N)dP
∗(ω̃N)−

∫
ΩN

f(ω̃N)dP
∗(ω̃N)

]
>(1− α)

[
min
P∈P∞

N

∫
ΩN

f(ω̃N)dP (ω̃N)−min
P∈P

∫
ΩN

f ′(ω̃N)dP (ω̃N)

]
≥ 0,

where the last inequality follows from inequality (A.2). As α > 0, one has,

W (c(D,ωN), P ∗)−W (c(D), P ∗) > 0.

ONLY IF. Consider the contra-positive statement: If there does not exist any α ∈ (0, 1]

such that the condition holds, then there must exist D ∈ D with W (c(D,ωN), P ∗) <

W (c(D), P ∗). If P(ωN) does not accommodate P ∗, then the conclusion follows from
Theorem 1. Consider the case where P(ωN) accommodates P ∗. The presumption implies

P(ωN) ̸= Pα ≡ αP ∗ + (1− α)P ,∀α ∈ (0, 1],

It thus implies the existence of α̂ ∈ [0, 1] such that

P(ωN) ⫋ Pα,∀α ≤ α̂,

and for all α > α̂, there always exists P ′ ∈ P(ωN) such that P ′ /∈ Pα. In other words,
P ′ is on the boundary of both P(ωN) and Pα̂. Since both sets are closed and convex, they
admit the same supporting hyperplane at P ′. In other words, there exists an act f , whose
minimum expectation among both P(ωN) and Pα̂ are achieved at P ′. It therefore implies
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that,

min
P∈P(ωN )

W (f, P ) = min
P∈α̂P ∗+(1−α̂)P

W (f, P ) = α̂W (f, P ∗) + (1− α̂)min
P∈P

W (f, P ).

Next, because P(ωN) ⫋ Pα̂, by strong separating hyperplane theorem, there also must
exist an act g such that for some β > α̂,

α̂W (g, P ∗)+(1−α̂)min
P∈P

W (g, P ) < min
P∈P(ωN )

W (g, P ) = βW (g, P ∗)+(1−β)min
P∈P

W (g, P ),

where β > α̂ follows from the fact that for such g, W (g, P ∗) > min
P∈P

W (g, P ). One can
normalize g by taking mixtures with constant acts to get

W (g, P ∗) = 1/2, and min
P∈P

W (g, P ) = 0.

Then normalize f similarly to get for some ϵ1, ϵ2 ∈ (0, (β − α̂)/2) such that

W (f, P ∗) = 1/2 + ϵ1 and min
P∈P

W (f, P ) = ϵ2.

Then for the decision problem D = {f, g}, it is the case that c(D) = f and c(D,ωN) = g.
The second claim follows from

min
P∈P(ωN )

W (f, P ) = α̂W (f, P ∗) + (1− α̂)min
P∈P

W (f, P )

= α̂(1/2 + ϵ1) + (1− α̂)ϵ2 < β/2

= βW (g, P ∗) + (1− β)min
P∈P

W (g, P ) = min
P∈P(ωN )

W (g, P ).

But W (f, P ∗) > W (g, P ∗), i.e. the conclusion.
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A.5 Proof of Proposition 1

Proof. For any D ∈ D, if the data-revised set accommodates the true DGP P ∗ and refines
the initial set, then

W (c(D,ωN), P ∗) ≥ min
P∈P(ωN )

W (c(D,ωN), P )

≥ min
P∈P(ωN )

W (c(D), P )

≥ min
P∈P

W (c(D), P ),

where the first inequality follows from P ∗ ∈ P(ωN), the second inequality follows from
the fact that c(D,ωN) is optimal with respect to P(ωN), the third inequality follows from
P(ωN) ⫋ P . Notice the last inequality can be strict for some D ∈ D as P(ωN) ⫋ P .

A.6 Proof of Theorem 5

Proof. The only argument is to show all possible DGPs satisfy the condition of Kol-
mogorov’s strong law of large numbers:

Kolmogorov’s SLLN. Let {Xi} be a sequence of independent random variables. De-
fine YN = N−1

∑N
i=1Xi and µ̄N = N−1

∑N
i=1 µi. If E[Xi] = µi and var(Xi) = σ2

i ,

lim
N→∞

N∑
i=1

σ2
i

i2
<∞,

then YN − µ̄N → 0 almost surely as N → ∞.
Fix any possible DGP P ∈ ∆indep(Ω). For any s ∈ S, let Xi = I{ωi = s}. Then Xi’s

are independent random variables with E[Xi] = Pi(s) and var(Xi) = Pi(s)(1 − Pi(s)).
To see the condition of SLLN holds,

lim
N→∞

N∑
i=1

σ2
i

i2
= lim

N→∞

N∑
i=1

Pi(sj)(1− Pi(sj))

i2

≤ lim
N→∞

N∑
i=1

1

i2
=
π2

6
<∞.

Thus, Φ(ωN)(s) − P̄N(s) → 0 almost surely for all s ∈ S. SLLN implies that for P -
almost every ω and for any ϵ > 0, there exists N̄(ω, ϵ, s) such that for all N ≥ N̄(ω, ϵ, s),
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|Φ(ωN)(s)− P̄N(s)| < ϵ. By definition, for any ϵ > 0, the data-revised set obtained using
the empirical distribution method can be written as

P(ωN) =
{
P ∈ P : ∩s∈S|P̄N(s)− Φ(ωN)(s)| < ϵ

}
.

Let N̄(ω, ϵ) = max{N̄(ω, ϵ, s)}, then SLLN implies that for all N ≥ N̄(ω, ϵ), P ∈
P(ωN). Thus, the conclusion holds for all ϵ > 0.

A.7 Proof of Theorem 6

Proof of Theorem 6. Some additional notations are required to state this proof. Let S =

{s1, · · · , sd}. For s ∈ {s1, · · · , sd−1}, let es denote the corresponding standard basis in
Rd−1. Let Xi : Ω → Rd−1 denote a (d− 1)-dimensional random vector such that Xi = eωi

if ωi ∈ {s1, · · · , sd−1} and Xi = 0 if ωi = sd. For each P , let Pi denote the (d −
1)-dimensional vector whose coordinates are Pi(s) for s ∈ {s1, · · · , sd−1}. If P is the
underlying probability measure, then the mean vector of Xi is µi = Pi. Moreover, the
covariance matrix Σi of the random vector Xi is

[Σi]kl =

Pi(sk)(1− Pi(sk)) if k = l;

−Pi(sk)Pi(sl) if k ̸= l.

Given the full-support assumption, the covariance matrix is always positive definite. Let
X̄N ≡ N−1

∑N
i=1Xi be the random vector given by the average. Let µ̄N ≡ N−1

∑N
i=1µi

and Σ̄N ≡ N−1
∑N

i=1Σi.

Lemma A.1. Let P be any compact subset of ∆indep(Ω) such that all P ∈ P have full

support. For any P ∈ P , the Central Limit Theorem holds, i.e.,
√
N(X̄N − µ̄N )

D−→
N

(
0, Σ̄N

)
.

The proof is standard by combining Liapounov’s CLT for Triangular arrays with the
Cramer-Wold device. Lemma A.1 implies one can use Gaussian approximations to con-
struct acceptance regions. Specifically, for a (d − 1)-dimensional random vector X ∼
Nd−1(µ,Σ), the ellipsoidal region given by the set of all vectors x satisfying the following
has a probability of 1− α:

(x− µ)⊺Σ−1(x− µ) ≤ χ2
d−1(α),
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where χ2
d−1(α) is the upper 100α% quantile for the chi-square distribution with d − 1

degrees of freedom. By definition, the set of all such vectors is the probability contour of
the multivariate Gaussian distribution Nd−1(µ,Σ) with probability 1 − α. For any P ∈
∆indep(Ω), define

A∗
N,α(P ) = {x ∈ Rd−1 : (x− µ̄N )⊺Σ̄N

−1
(x− µ̄N ) ≤ χ2

d−1(α)}, (A.4)

i.e., the probability contour of the multivariate Gaussian distribution Nd−1(µ̄N , Σ̄N) with
probability 1− α. Then Lemma A.1 guarantees that

lim inf
N→∞

P (A∗
N,α(P )) ≥ 1− α.

Let Σ̂N denote the covariance matrix of the i.i.d. distribution (P̄N)∞ and define

A∗
N,α((P̄

N)∞) = {x ∈ Rd−1 : (x− µ̄N )⊺Σ̂N
−1
(x− µ̄N ) ≤ χ2

d−1(α)}, (A.5)

i.e., the corresponding probability contour for the multivariate Gaussian distribution Nd−1(µ̄N , Σ̂N).

Lemma A.2. For any P ∈ ∆indep(Ω), N and α, A∗
N,α(P ) ⊆ A∗

N,α((P̄
N)∞).

Lemma A.2 further implies P (A∗
N,α(P )) ≤ P (A∗

N,α((P̄
N)∞)). Therefore, it follows

that
lim inf
N→∞

P (A∗
N,α((P̄

N)∞)) ≥ lim inf
N→∞

P (A∗
N,α(P )) ≥ 1− α.

Finally, notice that

lim inf
N→∞

P ({ωN : P∞
N ∈ co(P(ωN)∞N )}) ≥ lim inf

N→∞
P ({ωN : P ∈ P(ωN)})

= lim inf
N→∞

P (A∗
N,α((P̄

N)∞)) ≥ 1− α.

Thus, the conclusion.

Proof of Lemma A.1. The following definitions are taken from White (1984):
Liapounov’s CLT for Triangular Arrays. Let {ZNi} be a sequence of independent

random scalars with µNi ≡ E[ZNi], σ2
Ni = var(ZNi), and E|ZNi − µNi|2+δ < ∆ < ∞

for some δ > 0 and all N and i. Define Z̄N ≡ N−1
∑N

i=1 ZNi, µ̄N ≡ N−1
∑N

i=1 µNi and
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σ̄2
N ≡ var(

√
NZ̄N) = N−1

∑N
i=1 σ

2
Ni. If σ̄2

N > δ′ > 0 for all N sufficiently large, then

√
N(Z̄N − µ̄N)/σ̄N

D−→ N (0, 1).

Cramer-Wold device. Let {bN} be a sequence of random k × 1 vectors and suppose
that for any real k×1 vector λ such that λ⊺λ = 1, λ⊺bN

D−→ λ⊺Z where Z is a k×1 vector
with joint distribution function F . Then the limiting distribution of bN exists and equals F .

For any λ with λ⊺λ = 1, consider the sequence of random variables given by Yi =

λ⊺Xi. Then one has E[Yi] = λ⊺µi and var(Yi) = λ⊺Σiλ. For ȲN = N−1
∑N

i=1 Yi, one
has E[ȲN ] = λ⊺µ̄N and

var(
√
NȲN) = λ⊺Σ̄Nλ = λ⊺(Σ̄N

1/2
)⊺(Σ̄N

1/2
)λ.

The existence of Σ̄N
1/2 is guaranteed by the fact that Σ̄N is positive definite. Moreover,

let it be the positive square root of Σ̄N so that it is unique, symmetric, and positive definite
(Theorem 7.2.6 (a) in Horn and Johnson (2012)). Let ZNi = λ⊺Σ̄N

−1/2
Xi. Then one has

E[Z̄N ] = λ⊺Σ̄N
−1/2

µ̄ and

var(
√
NZ̄N) = λ⊺(Σ̄N

−1/2
)⊺var(

√
NX̄N)Σ̄N

−1/2
λ

= λ⊺(Σ̄N
−1/2

)⊺(Σ̄N
1/2

)⊺(Σ̄N
1/2

)(Σ̄N
−1/2

)λ = 1.

If Liapounov’s CLT holds, then
√
N(Z̄N − E[Z̄N ])

D−→ N (0, 1). Applying the Cramer-
Wold device will imply the Lemma. Thus, it remains to show that the Liapounov condition
holds for any P ∈ P and for any λ. That is, for some δ > 0, there exists ∆ <∞ such that
for any N and i, E|ZNi|2+δ < ∆. By Minkowski’s inequality,

E[|ZNi|2+δ] ≤
∑
j

λjE|(Σ̄N
−1/2

Xi)j|2+δ.

Notice that Xi is either 0 or ek. The RHS is less than the following

(max
k,l

[Σ̄N
−1/2

]kl)
2+δ.

Since Σ̄N
−1/2 is symmetric and positive semi-definite, the largest entry must be on the

diagonal. The trace of the matrix is equal to the sums of the eigenvalues. Both the diagonal
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elements and eigenvalues are non-negative due to positive definiteness (Corollary 7.1.5
in Horn and Johnson (2012)). Thus, it suffices to show the eigenvalues of Σ̄N

−1/2 are
bounded from above. Moreover, as each eigenvalue of Σ̄N

−1/2 is the square root of the
eigenvalue of Σ̄N

−1. Thus, one only needs to show the eigenvalues of Σ̄N
−1 are bounded

from above, which is equivalent to showing the eigenvalues of Σ̄N are bounded away from
zero.

For every Σi, the smallest eigenvalue is bounded below by minj Pi(sj) (Watson, 1996).
Furthermore, as each Σi is symmetric and positive definite, the minimum eigenvalue of∑n

i=1 Σi (n times the minimum eigenvalue of Σ̄N ) is greater than the sum of the minimum
eigenvalues of every Σi (Corollary 4.3.15 in Horn and Johnson (2012)). Therefore, it
suffices to show that Pi(sj) is bounded away from zero for every i and j. By assumption,
P is compact thus minj,i Pi(sj) exists. By full-support assumption, the minimum is always
positive.

Proof of Lemma A.2. It suffices to show that for any P ∈ ∆indep(Ω), N , constant c ∈ R,
and for all x,

(x− µ̄N )⊺Σ̄N
−1
(x− µ̄N ) ≤ c⇒ (x− µ̄N )⊺Σ̂N

−1
(x− µ̄N ) ≤ c,

which is equivalent to

(x− µ̄N )⊺Σ̄N
−1
(x− µ̄N )− (x− µ̄N )⊺Σ̂N

−1
(x− µ̄N ) ≥ 0,∀x.

In other words, for any x,
x⊺(Σ̄N

−1 − Σ̂N
−1
)x ≥ 0

That is, the lemma is true if (Σ̄N
−1−Σ̂N

−1
) is a positive semi-definite matrix. It is further

equivalent to, according to Corollary 7.7.4 in Horn and Johnson (2012), (Σ̂N − Σ̄N ) being
positive semi-definite. The two covariance matrices are given by, respectively,

[Σ̂N ]kl =

P̄N(sk)(1− P̄N(sk)) if k = l,

−P̄N(sk)P̄
N(sl) if k ̸= l,
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and

[Σ̄N ]kl =


N−1

N∑
i=1

Pi(sk)(1− Pi(sk)) if k = l,

−N−1
N∑
i=1

Pi(sk)Pi(sl) if k ̸= l.

By algebra, one can show,

N [Σ̂N − Σ̄N ]kl =


N∑
i=1

(Pi(sk)− P̄N(sk))
2 if k = l;

N∑
i=1

(Pi(sk)− P̄N(sk))(Pi(sl)− P̄N(sl)) if k ̸= l.

Notice that N [Σ̂N − Σ̄N ]kl is a Gram Matrix Gkl = ⟨vk, vl⟩, where the set of vectors
are given by:

[vk]i = Pi(sk)− P̄N(sk).

A Gram Matrix is always positive semi-definite (Theorem 7.2.10 in Horn and Johnson
(2012)), therefore Σ̂N − Σ̄N is positive semi-definite as desired.

B When Experiments can be Dependent

Throughout the main text, the possible data-generating processes are assumed to be inde-
pendent across experiments. In this section, I show that all results in Section 3 continue to
hold after a slight modification of the definitions to take dependence into account. I then
discuss how results in Section 4 can also be generalized accordingly.

For this section only, let the initial set P be a compact subset of ∆(Ω). As before,
assume that every P ∈ P has full support. For any P ∈ P and sample data ωN ∈ SN ,
define the marginal distribution over future states conditional on ωN by

P (ω̃N | ωN) =
P (ωN , ω̃N)

P (ωN)
, ∀ ω̃N ∈ ΩN . (B.1)

Let P(· | ωN) denote the set of such conditional distributions.
The benchmark decision continues to use the initial set P but conditions on the observed

sample ωN through the set of marginals P(· | ωN). This corresponds to the decision of a
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DM who applies prior-by-prior, or full-Bayesian, updating to each P ∈ P . Formally,

c(D | ωN) ≡ argmax
f∈D

min
P∈P(·|ωN )

∫
ΩN

f(ω̃N) dP (ω̃N) = argmax
f∈D

min
P∈co(P(·|ωN ))

∫
ΩN

f(ω̃N) dP (ω̃N).

Let P(ωN) denote the data-revised set, and P(ωN)(· | ωN) the corresponding set of
conditional distributions. The data-revised decision is then

c(D,ωN | ωN) ≡ argmax
f∈D

min
P∈co(P(ωN )(·|ωN ))

∫
ΩN

f(ω̃N) dP (ω̃N).

In words, the data-revised decision is obtained through a two-step procedure: first revising
the initial set to P(ωN), and then conditioning each DGP in the revised set on the observed
data.

The data-revised set accommodates a DGP P if

P (· | ωN) ∈ co(P(ωN)(· | ωN)).

This condition holds whenever P ∈ co(P(ωN)), that is, whenever the data-revised set
contains the true DGP. The data-revised set refines the initial set if

co(P(ωN)(· | ωN)) ⫋ co(P(· | ωN)).

A truth-accommodating refinement is a data-revised set that both accommodates the true
DGP P ∗ and refines the initial set.

Notice that all results in Section 3 rely on the independence assumption only through the
definitions of the benchmark decision, the data-revised decision, and the truth-accommodating
refinement. Once these definitions are modified to incorporate dependence, all proofs con-
tinue to hold without change. More specifically, one can simply let P(· | ωN) be the initial
set, P(ωN)(· | ωN) the data-revised set, and P ∗(· | ωN) the true DGP, and directly apply
the results.

Theorem B.1. Suppose P ⊂ ∆(Ω). If the benchmark decision, data-revised decision, and

truth-accommodating refinement are defined as in this section, then all results in Section 3

continue to hold.

For results in Section 4, as already noted in the main text, Theorem 5 continues to hold
as long as a version of the strong law of large numbers applies. Theorem 6 is more delicate,
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but by the same token, it is natural to conjecture that it can also be generalized under similar
conditions.

Finally, Theorem 5 can be further extended to the case where S is infinite. In that
case, the proof would invoke the generalized Glivenko-Cantelli theorem for independent
but non-identically distributed random variables, as presented in Wellner (1981).
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