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1. INTRODUCTION

For economic models where consumers solve dynamic optimization problems

under risk, assumptions on preferences play a key role in the resulting solutions

and their comparative statics. At the level of preferences, the following three

properties are often mentioned as being desirable: (i) time consistency (TC), (ii)

the ability to separate time and risk preferences (SEP) and (iii) the ability to ac-

commodate temporal resolution of risk indifference (TRI). However, standard

dynamic preference models cannot simultaneously satisfy these three proper-

ties. In this paper in the context of the dynamic consumption-portfolio problem,

we provide necessary and sufficient conditions on preferences such that the three

properties can be satisfied on a meaningful subset of the general choice space.

Moreover, conditions on asset returns are given that ensure that the optimal de-

mands based on these preferences always lie in this set. When all three proper-

ties are satisfied, one can unambiguously separate the specific roles of time and

risk preferences in explaining asset demand and intertemporal consumption-

saving behavior.

In deriving conditions such that TC, SEP and TRI hold, we focus on the DOCE

(dynamic ordinal certainty equivalent) preference structure of Selden and Stux

(1978). We also consider the better known model of KP (Kreps and Porteus

(1978)). As the axiomatic framework for both DOCE and KP preferences is fully

developed, our primary concern is with the respective demand implications of

the two models. Unlike the DOCE preference model which assumes TRI, the

KP preference model by design incorporates a pure psychic preference for early

or late resolution of consumption risk (which should be distinguished from an

early resolution of income risk which could be of significant planning value). It

is well-known that temporal resolution preferences can confound the complete

https://econtheory.org
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separation of the effects of time and risk preferences.1 Moreover, in recent years

some research has called into question the temporal resolution implications of

KP preferences. Epstein, Farhi and Strzalecki (2014) argue that standard param-

eter assumptions in finance and macroeconomic applications of the EZW (Ep-

stein and Zin (1989) and Weil (1990)) version of the KP preference model can im-

ply that consumers would pay implausibly large timing premia for early resolu-

tion of consumption risk.2 More directly, Meissner and Pfeiffer (2022) provide an

experimental test of both (i) the existence and size of temporal resolution prefer-

ences of individuals and (ii) the validity of the EZW preference model. First, they

directly estimate the timing premium and find that roughly 40% of their subjects

exhibit TRI. Second, based on an independent elicitation of the subjects’ time

preference and risk preference parameters, they compute the theoretically pre-

dicted timing premia and find a negative correlation between the estimated and

predicted timing premia. They conclude that the assumptions of the EZW pref-

erence model are inconsistent with their experimental results.

DOCE preferences are based on two independent building blocks: a one-

period EU (expected utility) representation defined over distributions of con-

sumption characterizing risk preferences and a multiperiod time preference util-

ity over certain intertemporal consumption vectors. By construction, DOCE

preferences always satisfy SEP and TRI, but do not satisfy TC for arbitrary choice

spaces. Indeed, Epstein (1992, p. 19) observes that the Selden and Stux (1978)

DOCE utility is appealing because of its "natural algorithm for computing utility

1Epstein and Zin (1989, p. 952) explicitly warn that "attitudes towards timing...seem intertwined

with [time preference] substitutability and risk aversion." Weil (1990, p. 33) observes that it would

be better if an alternative preference model would make it possible to disentangle a preference for

early or late resolution from attitudes toward risk and intertemporal substitution. A similar desire

for disentangling the three preference elements is expressed more recently by Barro and Ursua (2012,

footnote 7). Also, see Strzalecki (2013).
2Epstein, Farhi and Strzalecki (2014) argue that for the Long Run Risk model of Bansal and Yaron

(2004), consumers would give up approximately 30% of their lifetime consumption to have all risk

resolved early even though this would have no instrumental value.

https://econtheory.org
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and [complete] separation between time and risk preferences", but is unsatisfac-

tory because of its violation of TC. In this paper, we derive necessary and suffi-

cient conditions such that TC also holds in a setting where the consumer solves

a dynamic consumption-portfolio problem.

Suppose the consumer’s underlying time and risk preference building blocks,

respectively, take the CES (constant elasticity of substitution) and CRRA (con-

stant relative risk aversion) homothetic forms. Then her demands will exhibit

TC if and only if asset returns satisfy a property referred to as ICER (identical cer-

tainty equivalent return) where the asset portfolio certainty equivalent return in

each time period is non-stochastic (i.e., it does not vary across nodes for a given

time t).3 The intuition for why DOCE preferences exhibit TC is that homoth-

eticity and the ICER assumption permit the transformation of the choice over a

multi-date-event branch consumption tree, such as in Figure 1 in the next sec-

tion, into the choice over an equivalent single branch tree analogous to what the

consumer confronts in a pure certainty time consistent setting.4 At any given

node of the dynamic consumption tree, since the assumed CRRA risk preferences

imply one fund portfolio separation (Cass and Stiglitz (1970)), the ICER assump-

tion ensures that the optimal asset mix will be the same for each branch. Thus,

the consumer’s portfolio composition will be the same irrespective of the state

outcome at each node and she will have no reason to revise her plans as risk is

resolved. Whereas in general DOCE preferences violate TC, our conditions are

precisely what is required for TC to be satisfied.5

3While the restriction that asset returns satisfy ICER is clearly a special case, the stronger assump-

tion that asset returns are i.i.d. (identically and independently distributed) has been made in a num-

ber of important papers such as Levhari and Srinivasan (1969), Samuelson (1969) and Weil (1993).

More recently, some research on rare disasters, such as Barro (2009), assumes i.i.d. distributions.
4It should be emphasized that TC depends not just on preferences but also on asset returns or

prices. It is standard in discussions of time consistent preference models to impose restrictions solely

on preferences and assume that the conditions hold for all prices (e.g., Blackorby, et al. (1973)). Our

key property ICER can be viewed as effectively a restriction on asset prices and probabilities and thus

TC holds only for a subset of prices. See further discussion on this point in Section 6.
5As shown in Supplemental Appendix A, the TC results obtained in this paper can be extended to

the full class of HARA (hyperbolic absolute risk aversion) time and risk preferences.

https://econtheory.org
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Since KP and DOCE preferences can be constructed based on the same time

and risk preference building block utilities, it is natural to wonder how the time

consistent DOCE and KP demands relate to one another assuming asset re-

turns satisfy ICER. Although the DOCE and KP utilities are not ordinally equiva-

lent, under the assumptions guaranteeing that DOCE preferences satisfy TC, the

DOCE and KP demand functions are identical. At first blush this seems quite

surprising. However, this result can be understood once it is realized that on the

restricted set of consumption trees corresponding to the consumption-portfolio

problem, the DOCE and KP utilities actually become identical. This is true de-

spite the fact that KP preferences typically exhibit a strict temporal resolution

preference. The key to understanding this result is that the choice space over

which the two preference relations agree excludes the set of early resolution trees

that are essential to distinguishing a preference for early versus late resolution

trees. As a result on the more general space of consumption trees, DOCE and KP

consumers continue to diverge on their preferences over early and late resolution

trees with KP individuals potentially being willing to pay implausibly large timing

premia. This distinction implies that the DOCE preference model can be a useful

alternative to the EZW special case of KP preferences even when the two models

generate the same demands. Assume the DOCE and EZW preferences are based

on the same time and risk preference building block utilities and that consump-

tion growth is i.i.d. Then one can assume the DOCE preference model and gen-

erate exactly the same equilibrium asset returns as generated by the EZW prefer-

ences assumed in Epstein, Farhi and Strzalecki (2014), but without exhibiting the

timing premia which the authors find objectionable. Moreover, this holds true

for any combination of EIS and RRA (relative risk aversion) preference param-

eter values. It should be emphasized that, as indicated at the beginning of this

section, our focus in this paper is on partial equilibrium consumption-portfolio

demand analysis. However, as discussed briefly in our concluding comments in

Section 6, the extension of our DOCE model to an analysis of equilibrium asset

pricing when ICER does not hold and DOCE and EZW preferences diverge would

seem to be a potentially interesting and important avenue for future research.

https://econtheory.org
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Although ICER is a strong condition, when assuming CES time and CRRA risk

preference one can view it as the cost of ensuring that SEP holds and avoiding

timing premia. When ICER does not hold, DOCE preferences no longer sat-

isfy TC and the consumer can be viewed as exhibiting changing tastes as in the

classic papers of Strotz (1956) and Pollak (1968). As a result, application of the

standard resolute, naive and sophisticated solution techniques to the dynamic

consumption-portfolio problem in general yield different consumption and as-

set demand functions. We identify restrictions on the consumer’s preferences

ensuring that departures from ICER lead to small differences between sophisti-

cated and resolute demand which can be viewed as consistent with small welfare

losses and TC holding approximately. We provide analytic results for infinitesi-

mal change and numerical simulation results for discrete departures. We con-

struct examples where the welfare costs of time inconsistency can become quite

large, but argue that they may not be empirically relevant. Based on the same as-

set price process as is used by Melino and Yang (2003) and for which a calibration

is available, we specifically estimate the welfare losses associated with different

EIS and RRA combinations. With regard to the latter, as long as the EIS ≤ 0.5

and RRA= 10, the welfare losses associated with resolute and sophisticated de-

mand diverging are surprisingly small. For the case where 0.5< EIS ≤ 0.75 and

the RRA= 10, the welfare losses are larger but still only about 1%. In these cases,

where the welfare losses are small and TC holds approximately, the assumption

of CES-CRRA DOCE preferences allows one to realize the benefits of full separa-

tion of time and risk preferences and TRI being satisfied. For an EIS = 1.5 and

RRA = 10, the welfare costs of time inconsistency are larger but still only about

4%.6

6When ICER does not hold, we cannot directly compare the welfare losses of TC not holding exactly

with the timing premium estimates in Epstein, Farhi and Strzalecki (2014). Moreover, Epstein, Farhi

and Strzalecki (2014) consider very different stochastic processes than the simple 2 state process we

examine in this paper. It is subject to further research to determine, when allowing for more general

stochastic processes of prices in an equilibrium setting, under what conditions the timing premia are

large for EZ and under what conditions welfare losses from time inconsistent DOCE preferences are

large.

https://econtheory.org
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The rest of the paper is organized as follows. In the next section, we intro-

duce notation, definitions and the consumer’s optimization problem. Section

3 provides necessary and sufficient conditions for DOCE preferences to satisfy

TC. When TC holds, the classic certainty Fisherian consumption-saving analysis

can be applied to the consumption-portfolio setting. Section 4 compares con-

sumption and asset demands for DOCE and KP preferences based on the same

CES-CRRA time and risk preference building block utilities when asset returns

satisfy ICER. In Section 5, we show that under given conditions, if one relaxes

ICER, DOCE preferences can remain almost time consistent. Section 6 contains

concluding comments. Proofs are given in the Appendix and additional material

is provided in the online Supplemental Appendix.

2. PRELIMINARIES

2.1 Notation and Definitions

We assume a risky, intertemporal setting where time is indexed by t = 1, . . . , T .

A consumer solves a dynamic consumption-portfolio problem (formally defined

in the next subsection). The asset portfolio is comprised of risky assets and, in

some cases, a risk free asset. Each asset has a maturity of one time period. At the

beginning of each period t < T , conditional on asset return realizations and prior

saving decisions which determine period t income, the consumer chooses opti-

mal period t consumption and asset holdings and a plan for consumption and as-

set holdings for each future time period.7 The risky asset return distribution de-

termines the stochastic structure of the consumer’s dynamic consumption pos-

sibilities and any budget feasible set of demands determines a consumption tree.

This is illustrated in Figure 1 which can be viewed as corresponding to a feasible

three period consumption plan where in the first two time periods the consumer

can invest in a single risky and risk free asset. In periods 1 and 2, the risky asset

has two possible payoffs with associated probabilities. This return distribution

7In the terminal period T , consumption corresponds to the return from the T − 1 portfolio.

https://econtheory.org
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Period 1 Period 3Period 2

FIGURE 1. Three Period, Four Branch Consumption Tree

defines the four branch tree structure in Figure 1 as well as the branch probabil-

ities. A node in this tree is the combination of a date t and the realization of the

asset return distribution and is associated with a specific consumption value.

It should be emphasized that in solving the dynamic consumption-portfolio

problem, the set of consumption trees over which the consumer is choosing has

a fixed set of probabilities and branches specified by the assumed risky asset pay-

off distribution. Given that the results we prove in this paper hold for an arbitrary

number of time periods and asset return realizations, it is necessary to intro-

duce a more general notation than used for the simple tree in Figure 1 to identify

https://econtheory.org


Submitted to Theoretical Economics Time Consistency and Separation 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

branches and nodes of the tree. Following the standard practice in the dynamic

asset pricing literature (e.g., Duffie (2001, Chapter 3)), different realizations of the

asset returns are referred to as economic shocks. Let S be the finite set of real-

izations of exogenous asset return shocks and st denote the realization of a shock

at date t ≥ 1. The dated sequence of realizations of shocks facilitates the iden-

tification of optimal consumption and asset demands associated with each date

and risky asset return realization. Thus, we introduce a history of realizations of

shocks up to some date t

st = (s1, s2, . . . , st) ∈ S × ...× S︸ ︷︷ ︸
t times

= St

which is also referred to as a date-event.8 Since each chance node in a tree can

be reached only through one historical path, st also uniquely defines a chance

node and corresponding consumption and asset demands.9 If sτ precedes st in

a tree, then we write st ≻ sτ .

Let c(st) ∈C ⊆R+ denote consumption at node st and c= (c(s1),
{
c(s2)

}
, ...,{

c(sT )
}
), where st ∈ St and t ∈ {1, ..., T}, denote the T -period consumption vec-

tor. Individuals have preferences over the set of vectors c which are represented

by the utility function U(c). As will be clear from the context, throughout this

paper c will be used to denote both the dynamic consumption vectors and the

consumption trees corresponding to the consumption vectors, where the set of

asset payoff shocks S and branch probabilities are determined by the assumed

asset payoff distribution.

We next briefly describe the DOCE utility axiomatized in Selden and Stux

(1978). Assume a T period setting, where consumption in period t = 1 is cer-

tain and risky in periods t = 2, ..., T . In period t, the consumer’s certainty time

preferences over degenerate consumption streams (ct, ..., cT ) (t ∈ {1, ..., T}) are

8The shock s1 is degenerate in the sense that it is the result of an outcome prior to period t= 1.
9To illustrate the application of the dated history of shocks, note that in the three period tree in

Figure 1, the node associated with the planned consumption c31 is defined by the realization of the

asset return shocks s1, s2 and s3. This node corresponding to the upper branch of the tree and the

associated consumption can only be reached by the history s3 = (s1, s2, s3).

https://econtheory.org


10 Submitted to Theoretical Economics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

represented by the following additively separable utility

Ut(ct, ..., cT ) = u(ct) +
T∑

i=t+1

βi−tu(ci), (1)

where 0 < β ≤ 1 is the standard discount function. The consumer’s risk prefer-

ences in each period t ∈ {2, ..., T} are identical and represented by the single pe-

riod EU function ∑
st

π(st)V (c(st)), (2)

where π(st) is the probability of the date-event (node) st and V is the NM (von

Neumann-Morgenstern) index. The stationary time preference u and NM index

V will be assumed to satisfy u′ > 0, u′′ < 0, V ′ > 0 and V ′′ < 0 unless stated other-

wise. In what follows, we use preferences over current and future consumption

conditional on the current date-event node being sτ .

The period t certainty equivalent evaluated at node sτ is defined by

(ĉt|sτ ) = V −1

∑
st≻sτ

π(st|sτ )V (c(st))

 , (3)

where π(st|sτ ) is the probability of date-event st conditional on being at node sτ .

Thus, for a given sτ , the DOCE utility for the consumption tree c is given by

U (c|sτ ) = u(c(sτ )) +
T∑

t=τ+1

βt−τu(ĉt|sτ ).

Note that U(·|sτ ) is a function of c but only varies with c(sτ ) and c(sτ+i), i =

1, ..., T − τ , where sτ+i ≻ sτ . In period 1, the utility is given by

U (c) = u(c1) +
T∑
t=2

βt−1u(ĉt|s1). (4)

For the DOCE preference model, (i) risk preferences are constant over time, (ii)

there is a complete separation of time and risk preferences corresponding to U

https://econtheory.org


Submitted to Theoretical Economics Time Consistency and Separation 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

and V 10 and (iii) the consumer is psychically indifferent to when risk is resolved

(see the discussion of TRI below).

Kreps and Porteus (1978) derived the recursive representation

U(c|sτ ) = U

c(sτ ),
∑

sτ+1≻sτ

π(sτ+1|sτ )U(c|sτ+1)

 ,

where U is continuous and strictly increasing.11 Note that if U is linear in the

second argument, the KP representation specializes to the EU special case. The

EZW representation is a special case of the KP utility,12 where

U (ct, x) =−

(
c−δ1
t + β (−δ2x)

δ1
δ2

) δ2
δ1

δ2
and VT (x) =−x−δ2

δ2
(δ1, δ2 >−1) , (5)

with VT being induced from U .13 If δ1 = δ2 = δ, the EZW representation special-

izes to the EU function

U (c|sτ ) =−(c(sτ ))−δ

δ
−E

[
T∑

t=τ+1

βt−τ (ct(s
τ ))−δ

δ

]
.

10As discussed in Selden (1978), time and risk preferences satisfy SEP in the sense that (i) the OCE

utility is constructed from the independent building blocks (U,V ) and (ii) if a given general continu-

ous and monotone utility satisfies the OCE axioms, then it is always possible to derive the unique, up

to appropriate transformations, separate U and V indices.
11Unlike the DOCE case, the KP preference building blocks are U and U . An EU index V can be

induced from the KP utility for the final time period T .
12For simplicity, we refer to (5) as EZW utility. However, as noted by Weil (1990, footnote 9), his

form differs from the Epstein and Zin (1989) expression (5).
13It should be noted that both Epstein and Zin (1989) and Weil (1990) give recursive forms of their

utility and do not formally identify the time and risk preference utilities defined over consumption

as in (5). In fact, in their representations, risk preferences are defined over utility values rather than

consumption values.

https://econtheory.org


12 Submitted to Theoretical Economics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

Both the KP and EZW recursive preference structures can accommodate a prefer-

ence for early or late resolution of risk. However, as mentioned in the prior sec-

tion, this temporal resolution preference cannot be varied independently from

time and risk preferences.

In this paper, we assume DOCE preferences are based on the following time

and risk preference building block utilities which results in the preferences being

homothetic14

u(c) =−c−δ1

δ1
and V (c) =−c−δ2

δ2
(δ1 >−1, δ2 >−1, δ1, δ2 ̸= 0) (6)

u(c) = ln(c) and V (c) = ln(c) (δ1, δ2 = 0). (7)

For the DOCE and KP preferences based on (6)-(7), the EIS and Arrow-Pratt RRA

(relative risk aversion) measures are given by, respectively,

EIS =
1

1+ δ1
and − ct

V ′′(ct)

V ′(ct)
= 1 + δ2. (8)

Before concluding this subsection, we discuss TC, TRI and SEP and then review

what is known about their simultaneous satisfaction for the DOCE and KP prefer-

ence models. Given the different axioms of these two models, it will prove more

tractable in facilitating comparisons to state the following properties in terms of

utility functions rather than the more foundational preferences.

The classic meaning of time consistency is illustrated in Figure 2. Consider the

two three period, four branch consumption trees which are identical except for

their respective second period lower branch subtrees. The subtrees differ in both

their consumption values and probabilities as indicated by the unprimed and

primed values. In Figure 2, time consistency requires that if the three period tree

with the unprimed subtree is preferred to the three period tree with the primed

subtree, then the unprimed period two continuation must be preferred to the

14To avoid corner solutions for the consumption-portfolio problems considered below, we do not

include the δ2 =−1 case.

https://econtheory.org
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Period 1 Period 2Period 1 Period 3Period 3Period 2
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FIGURE 2. Illustration of Time Consistency

primed continuation. More formally, we employ the following version of the TC

definition in Johnsen and Donaldson (1985).15

DEFINITION 1. The consumer’s preferences satisfy TC if and only if at any time

t with some payoff history st, if the two trees c and c′ only differ in a subtree

starting from a given note st+1 ≻ st, then

U
(
c|st
)
≥U

(
c′|st

)
⇒U

(
c|st+1

)
≥U

(
c′|st+1

)
.

15See a similar definition in Figure 2 in Epstein and Zin (1989, p. 945).
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The preference for when risk is resolved over time is a key feature of KP pref-

erences and the special case of temporal resolution indifference is a central ele-

ment in the axiomatization of DOCE preferences in Selden and Stux (1978). In

this paper, our primary interest in TRI relates to its ruling out the implausibly

large timing premium in some asset pricing and macro models based on the Ep-

stein and Zin (1989) special case of KP preferences. Epstein, Farhi and Strzalecki

(2014) consider the case of multiple consumption processes. Let (c,π) denote a

process where c is the vector of consumption over time and different states and

π denotes the associated state probabilities. To define the timing premium for

the consumption processes (c,π), Epstein, Farhi and Strzalecki (2013) consider

the special process (c′,π′) which is derived from (c,π) and has the same period

one probability distribution over subsequent consumption but differs in having

all of the risk resolved at the beginning of period two. One can view the derived

process (c′,π′) as corresponding to an alternative tree which has ST−1 branches

in period 1 with no uncertainty at periods t = 2, . . . , T . Each branch in the first

period can then be associated with a terminal node of the original tree. Define

consumption of the tree corresponding to (c′,π′) by c′t(s
T ) = ct(s

T ) and define

probabilities as π′(sT ) = π(sT ). (See Figure 3 where the consumption trees in

(a) and (b) correspond, respectively, to the three period consumption processes

(c,π) and (c′,π′).)

Then we have the following definition.

DEFINITION 2. The consumer’s preferences satisfy TRI if and only if any con-

sumption process (c,π) is indifferent to the corresponding early resolution tree

(c′,π′).

Note that this definition of TRI differs from (i) the TRI axiom in Strzalecki (2013)

due in part to his consideration of the case of ambiguity preferences and (ii) the

TRI axiom in Selden and Stux (1978) since they consider not just the early reso-

lution tree but also other trees with partial resolution. In our definition, risk is

resolved after period 1 while in the other two papers, it may be resolved at a later

date. This difference turns out to play no role in our analysis.

https://econtheory.org
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FIGURE 3. Illustration of TRI

REMARK 1. Following Epstein, Farhi and Strzalecki (2014, p. 2684), given a utility

function U a timing premium ϑ is defined as

ϑ= 1− U (c,π)

U
(
c′,π′) .

Therefore, preferences satisfy TRI if and only if for any consumption processes

(c,π), the timing premium is zero.

Finally the dynamic utility defined over consumption trees U(c) and its under-

lying preferences will be said to exhibit SEP if it is based on the two independent

building blocks (U,V ). This definition is clearly satisfied by DOCE preferences.

However, in the case of KP preferences, assuming a psychic preference for early

or late resolution imposes a restriction on U and V and hence violates the in-

dependence of the time and risk preference indices.16 To see this most clearly,

consider the case where the building block utilities correspond to CES time and

CRRA risk preference utilities (6)-(7). In this case, as observed by Epstein and

16The EU representation is a special case of both the DOCE and KP preference models where u and

V are positive affine transforms of each other and hence SEP is violated.
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Zin (1989, p.952), the consumer has a preference for the early (late) resolution

tree depending on whether her risk preference parameter δ2 > (<) her time pref-

erence parameter δ1. Thus if a KP consumer has a preference for the early reso-

lution tree, her U and V building blocks cannot be prescribed independently as

they must satisfy δ2 > δ1.17

In terms of simultaneously satisfying TRI and SEP, Kreps and Porteus (1978,

Corollary 3) prove that TRI implies that their recursive utility specializes to a dy-

namic EU representation. Since the EU function does not satisfy SEP, this implies

the impossibility of satisfying these two properties at the same time.18 In this pa-

per, we argue that although it is impossible to satisfy TRI, SEP and TC simulta-

neously at the level of preferences for general choice spaces, the three properties

can be satisfied in the context of the joint consumption-portfolio optimization

problem introduced in the next subsection when appropriate restrictions are im-

posed on asset returns and the time and risk preference building block utilities.

2.2 Optimization Problem

In this subsection, we formally define the consumption-portfolio problem.

At the beginning of each period t = 1, . . . , T − 1 there are J one period assets

available for trade with returns R
(
st+1

)
=
(
Rj

(
st+1

))J
j=1

≥ 0 being realized at

node st+1. We assume that asset returns preclude arbitrage and R
(
st+1

)
has

full rank J . It is a basic result in finance19 (see, e.g., Duffie (2001, p. 3)) that this

is equivalent to the existence of ρ(st)> 0 for all st such that∑
st+1≻st

ρ(st+1)Rj(s
t+1) = ρ(st) ∀st, j. (9)

17This point is noted in Strzalecki (2013, pp. 1056-1057) and Epstein, Farhi and Strzalecki (2014, p.

2688).
18Strzalecki (2013) also considers axioms similar to TRI, SEP and TC. Starting from discounted un-

certainty averse preferences, his Theorem 1 proves that the corresponding axioms are simultaneously

satisfied if and only if one has a dynamic maxmin EU model.
19In the special case of complete asset markets, where the number of assets is the same as the

number of states, or more formally, where at each st, t < T , the matrix (R(st+1)){st+1≻st} has rank S

the ρ(st+1) in eqn. (9) can be interpreted as the contingent claim price for c(st+1).

https://econtheory.org
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An individual is assumed to choose consumption and assets in periods t =

1, . . . , T − 1 so as to maximize utility. We assume throughout that the individ-

ual has rational expectations in that she knows future asset returns contingent

on the nodes.

In period t ∈ {1, ..., T − 1}, at the node st, denote the demand for asset j ∈
{1, ..., J} by nj

(
st
)

and the vector of asset holdings by n= (n
(
s1
)
, ...,

{
n
(
st
)}

, ...,{
n
(
sT−1

)}
), where n

(
st
)
= (n1

(
st
)
, ..., nj

(
st
)
). Let I denote initial income.

The period 1 consumption-portfolio problem is defined as follows

max
c,n

U (c) S.T. (10)

c(st) = I −
∑
j

nj(s
t), t= 1, (11)

c(st) = n(st−1) ·R(st)−
∑
j

nj(s
t), 2< t < T, (12)

c(st) = n(st−1) ·R(st), t= T. (13)

In the certainty case, Blackorby, et al. (1973) prove that demands are time con-

sistent if and only if each period t+ 1 utility can be embedded into the period t

utility for all t ∈ {1, ..., T − 1} utilities. Johnsen and Donaldson (1985) extend this

notion to the risky case, where time consistency holds if and only if the future

utility function in each state can be embedded into the utility function of prior

periods. If time consistency fails to hold, then one needs to consider resolute,

naive and sophisticated choice.20

For resolute choice, the period 1 consumption-portfolio problem is defined as

follows

max
c,n

U (c) S.T. (14)

c(st) = I −
∑
j

nj(s
t), t= 1, (15)

20This is standard in the certain intertemporal setting (e.g., Selden and Wei (2016, p. 1916)).
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c(st) = n(st−1) ·R(st)−
∑
j

nj(s
t), 2< t < T, (16)

c(st) = n(st−1) ·R(st), t= T. (17)

In this case, the consumer maximizes her period one utility U (c) and
(
cR,nR

)
denotes the optimal resolute demands.

For naive choice, we have cN (s1) = cR(s1) and nN (s1) = nR(s1). Then in each

period τ (2≤ τ < T ), cN (sτ ) and nN (sτ ) are derived based on the period τ utility

function for the given nN (sτ−1), i.e.,

max
c,n

U (c|sτ ) S.T. (18)

c(sτ ) = n(sτ−1) ·R(sτ )−
∑
j

nj(s
τ ). (19)

As implied by the maximization of U (c|sτ ), in each period after the first the naive

consumer reoptimizes.

For sophisticated choice, define for each sT

c0(sT ,n) = n ·R(sT ),

and for each sτ , τ = 2, . . . , T − 1 recursively,

(c0,n0)(sτ ,n) = argmax
(c,n)

U (c|sτ ) S.T. (20)

c(sτ ) = n ·R(st)−
∑
j

nj , (21)

c(sτ+i) = ci(sτ+i,n), i= 1, ..., T − τ, (22)

where, also recursively, for all st

ci(st,n) = ci−1(st,ni−1(st−1,n)), (23)

and

ni(st,n) = ni−1(st,ni−1(st−1,n)). (24)

https://econtheory.org
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Optimal sophisticated choice can then be computed by iterating forward,

(c(st),n(st)) = (c0,n0(st,n(st−1))), (25)

3. TIME CONSISTENT DOCE DEMAND

In this section, we derive necessary and sufficient conditions such that CES-

CRRA DOCE preferences are time consistent. We also show that under these

conditions, the DOCE utility can be used to extend the classic certainty Fisherian

consumption-saving analysis to a T -period dynamic consumption-portfolio set-

ting.

3.1 Time Consistent Preferences over Restricted Domains

In this first subsection, we provide necessary and sufficient conditions on con-

sumption sets such that DOCE preferences are time consistent. In the next sub-

section, we state necessary and sufficient conditions on asset returns ensuring

that choices always lie in this set.

It is well-known that in general, DOCE preferences violate time consistency as

defined in Definition 1 above. We argue in this subsection that if one restricts the

domain of preferences (i.e., assumes that possible choices have to lie in a subset

of all possible consumption choices on the event-tree), time consistency can be

restored.

Before stating the general result, Proposition 1, characterizing restrictions on

the domain of preferences that ensure that DOCE preferences are time consis-

tent, we first provide a transparent example for why this can happen. For sim-

plicity, assume the simple three period consumption tree in Figure 1. Given the

fixed tree structure in Figure 1 and set of probabilities, a given consumption tree

can be fully characterized by the consumption vector

c= (c1, c21, c22, c31, c32, c33, c34) ∈R7
+.

The vectors (c21, c31, c32) ∈ R3
+ and (c22, c33, c34) ∈ R3

+, respectively, character-

ize in a natural way the upper and lower subtrees. Let U(c21, c31, c32|c1) and

https://econtheory.org
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U (c22, c33, c34|c1) represent, respectively, the DOCE preferences over the con-

sumption on the subtrees corresponding to (c21, c31, c32) and (c22, c33, c34). In the

current setting, the TC Definition 1 then simplifies to the following. For all c, c′

with c1 = c′1,

U (c21, c31, c32|c1) ≥ U
(
c′21, c

′
31, c

′
32|c1

)
and U (c22, c33, c34|c1)≥U

(
c′22, c

′
33, c

′
34|c1

)
=⇒U (c)≥U

(
c′
)
. (26)

While DOCE preferences do not satisfy TC over R7
+, it is easy to see that for

any c ∈ R7
+ they are time consistent over {c ∈ R7

+ : c = αc, α > 0} whenever they

are strongly monotone. This trivial example illustrates that time consistency is a

joint property of preferences and the domain over which they are defined.

Recognizing that the assumed CES-CRRA DOCE preferences are homothetic,

consider the following set as the domain of preferences.

I =

{
c ∈R7

+ : c= (c1, c21, c22, α1c21, α2c21, α3c22, α4c22),

(α1, . . . , α4) ∈R4
+, π31α

−δ2
1 + π32α

−δ2
2 = π33α

−δ2
3 + π34α

−δ2
4

}
. (27)

We next argue that the DOCE preferences are TC over the domain I . Define

K = π33α
−δ2
3 + π34α

−δ2
4

and rewrite the period 1 utility function as follows

U (c) = u(c1) + βu ◦ V −1

(
2∑

i=1

π2iV (c2i)

)
+ β2u ◦ V −1

 2∑
i=1

π2i
∑
j

π3jV (αjc2i)


= u(c1) + βu ◦ V −1

(∑
i

π2iV (c2i)

)
+ β2

(
u ◦ V −1

(∑
i

π2iV (c2i)

)
u ◦ V −1(K)

)

= u(c1) + βu ◦ V −1

(∑
i

π2iV (c2i)

)(
1 + βu ◦ V −1 (K)

)

https://econtheory.org
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and depending on whether the upper or lower state is realized

U (c21, c22, c31, c32, c33, c34|c1) = u(c2i) + βu ◦ V −1

∑
j

π3jV (αjc2i)


= u(c2i)

(
1 + βu ◦ V −1 (K)

)
(i= 1,2).

It is now easy to see that homothetic DOCE preferences are time consistent over

the domain I since the eqn. (26) condition for TC holds. The following proposi-

tion generalizes this result to arbitrary date event consumption trees.

PROPOSITION 1. Assume CES-CRRA DOCE preferences which are defined over con-

sumption on a date-event consumption tree with M nodes. Then the preferences

are time consistent if and only if consumption is restricted to the set

I =

 c ∈RM : ∃Vt, t= 2, ..., T − 1, such that

∀st, t < T, −1
δ2

∑
st+1≻st π(s

t+1|st)
(
c(st+1)
c(st)

)−δ2
= Vt

 . (28)

To see that eqn. (28) converges to eqn. (27) corresponding to the tree in Figure

1, note that in eqn. (28), for the consumption subtrees corresponding (c21, c31, c32)

and (c22, c33, c34) we have, respectively,

−1

δ2

∑
st+1≻st

π(st+1|st)
(
c(st+1)

c(st)

)−δ2

=− 1

δ2

(
π31

(
c31
c21

)−δ2

+ π32

(
c32
c21

)−δ2
)
= V2

and

−1

δ2

∑
st+1≻st

π(st+1|st)
(
c(st+1)

c(st)

)−δ2

=− 1

δ2

(
π33

(
c33
c22

)−δ2

+ π34

(
c34
c22

)−δ2
)
= V2,

implying that

− 1

δ2

(
π31

(
c31
c21

)−δ2

+ π32

(
c32
c21

)−δ2
)
=− 1

δ2

(
π33

(
c33
c22

)−δ2

+ π34

(
c34
c22

)−δ2
)
.

(29)

Then in eqn. (27), since

π31

(
c31
c21

)−δ2

+ π32

(
c32
c21

)−δ2

= π31α
−δ2
1 + π32α

−δ2
2

https://econtheory.org
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and

π33

(
c33
c22

)−δ2

+ π34

(
c34
c22

)−δ2

= π33α
−δ2
3 + π34α

−δ2
4 ,

eqn. (29) implies that

π31α
−δ2
1 + π32α

−δ2
2 = π33α

−δ2
3 + π34α

−δ2
4 ,

which is the requirement in eqn. (27).

3.2 Main Result

To apply Proposition 1 to the consumption-portfolio optimization problem (10)

- (13), we next provide simple conditions on asset returns that ensure that an

individual’s optimal consumption c lies in the set I . In order to do so, it is useful

to define for each st, ñ(st) ∈RJ to be the unique solution to the J equations∑
st+1≻st

π(st+1|st)R(st+1)V ′ (R(st+1) · ñ(st)
)
= 1, (30)

where the homothetic risk preference NM index takes the CRRA form in (6)-(7).

The following identical certainty equivalent return assumption then plays a key

role in the time consistency of DOCE choice.

Assumption ICER Assume that for all st, t < T ,

∑
st+1≻st

π(st+1|st)
(
R(st+1) · ñ(st)

)−δ2
=

R̂pt+1

∑
j

ñj(s
t)

−δ2

, (31)

where R̂pt+1 is non-stochastic.21

This assumption begins with the certainty equivalent return R̂pt+1 of the opti-

mal asset portfolio for the one period subtree starting from chance node st and

requires that for all chance nodes st in period t, the certainty equivalent return

21R̂pt+1 is the certainty equivalent return of the optimal asset portfolio. Since the preferences are

homothetic, it is always possible to obtain a non-stochastic certainty equivalent return. Also refer to

Selden and Wei (2024) for the discussion of R̂p in a two period case.

https://econtheory.org
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of the optimal portfolio is the same. However, ICER allows for different return

distributions in different time periods.

REMARK 2. It should be emphasized that the ICER property does not depend on

the asset choices, but more fundamentally it depends on the asset return distri-

bution characteristics, probabilities and preference parameters such as the value

of δ2.

When markets are incomplete this assumption can be difficult to verify. How-

ever, a simple sufficient condition for Assumption ICER to hold is that the asset

return distributions are identical across all nodes in a given period.

When markets are complete, Assumption ICER can be directly translated into

an assumption on asset returns. Based on the assumed CRRA representation

of risk preferences, corresponding to different values of δ2, different sets of asset

return distributions will satisfy ICER. Each branch in period t has an asset return

distribution from the same set parameterized by R̂pt.

We have the following result.

THEOREM 1. Suppose the consumer solves the consumption-portfolio problem

(10) - (13). Then the following hold.

(i) If the consumer’s DOCE utility takes the form corresponding to the CES-CRRA

utilities

u(c) =−c−δ1

δ1
and V (c) =−c−δ2

δ2
(δ1 >−1, δ2 >−1, δ1, δ2 ̸= 0),

her demands will be time consistent if and only if Assumption ICER holds.

(ii) If Assumption ICER holds, then the consumer’s demands will be time consis-

tent if and only if her preferences are represented by the DOCE utility correspond-

ing to

u(c) =−c−δ1

δ1
and V (c) =−c−δ2

δ2
(δ1 >−1, δ2 >−1, δ1, δ2 ̸= 0).

At first glance, the theorem seems very surprising: Why is the portfolio cer-

tainty equivalent return being non-stochastic sufficient for DOCE preferences to

https://econtheory.org
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be time consistent? While the detailed proof of Theorem 1 gives a formal an-

swer to this puzzle, the key insight is that Assumption ICER simplifies the first

order conditions and implies the conditions in Proposition 1. The intuition for

why in Theorem 1(i) Assumption ICER is sufficient for TC to hold follows directly

from its interaction with the implications of CRRA risk preferences and CES time

preferences. Without loss of generality, consider the three period tree in Figure

1. Let I21 and I22, respectively, denote the period 2 income at the nodes cor-

responding to the upper and lower branches based on the optimal period 1 de-

mands (c1, n1, nf1). At the period 2 nodes, CRRA risk preferences imply one fund

separation and the certainty equivalent period 3 consumption constraint can be

written as

ĉ3i = (I2i − c2i)R̂p2 (i= 1,2)

where i denotes the period 2 node and Assumption ICER implies that the port-

folio certainty equivalent return R̂p2 is the same at both two nodes. Given

these two linear constraints, the consumer confronts a standard consumption-

saving problem associated with selecting the optimal c2i. The assumption of

CES time preference implies that the fractions of consumption c2i/I2i and saving

(I2i − c2i)/I2i are independent of I2i. Thus, since Assumption ICER implies that

R̂p2 will be the same at both nodes and c2i/I2i and (I2i − c2i)/I2i will also be the

same at both nodes, the consumer will have no reason change her period 2 con-

sumption portfolio solution conditional on which node is realized and hence her

demands will be time consistent.22

In the application of Theorem 1, Assumption ICER guarantees that optimal de-

mands at time 1 will lie in set I and one can restrict the consumer’s choice to just

I rather than to the full budget set. The reader may wonder whether this is also

true with the passage of time, say to period 2. Suppose we define the “contin-

uation” set I2 where c1 has been realized and part of initial set I corresponding

to nodes associated with states that can no longer be realized have been deleted.

22See the related discussion in the next subsection concerning the decomposition of the

consumption-portfolio problem into an equivalent conditional portfolio problem and consumption-

saving problem.
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Now ICER guarantees that no new information has been realized with the pas-

sage from time period 1 to time period 2 and so the same argument that is used

for Theorem 1 can be applied to ensure that the period 1 optimal continuation

consumption plan continues to be optimal in the continuation consumption set

I2. More formally this can be seen from eqn. (34) in the proof of Theorem 1.

Since we have time consistency, this is equivalent to a consumer following naïve

choice not revising her resolute choice and corresponding plan derived in period

1.

REMARK 3. We give conditions in Supplemental Appendix A such that a con-

sumer with HARA (hyperbolic absolute risk aversion) DOCE preferences exhibits

TC.

3.3 A Risky Extension of the Classic Certainty Fisherian Consumption-Saving

Analysis

In this subsection, we explain how the assumptions of CES-CRRA DOCE utility

and ICER asset returns facilitate a natural risky portfolio extension of the classic

Fisherian certainty two period diagrammatic analysis frequently used in macroe-

conomic textbooks to introduce consumption and saving (e.g., Romer (2006) and

Mankiw (2010)).23 We then consider the extension to the T -period case.

For the consumption-portfolio problem at any date t = 1, ..., T − 1 node, cer-

tainty equivalent consumption at date t+1, ĉt+1, can be expressed as the product

of date t saving times a certainty equivalent portfolio return R̂pt. Because this re-

turn is constant for all levels of saving, the consumer’s two period consumption-

saving problem is exactly analogous to the Fisherian certainty case where the

certainty equivalent return plays the same role as the risk free rate. See Figure

4, where It denotes period t initial income, It − ct denotes period t saving and

U = const specifies a certainty time preference indifference curve. The same re-

strictions on the EIS that ensure that saving increases with a decrease in the

risk free rate in a certainty setting also guarantee that saving increases with a

23Although the Fisherian diagrammatic analysis is typically dropped once risk is introduced, we

show how it can be extended to the case of risky saving by exploiting the DOCE preference model.
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(mean preserving) increase in risk and a reduction in R̂pt. This pedagogical tool

highlights the complete separation of time and risk as reflected, respectively, in

the time preference indifference curves and the certainty equivalent budget con-

straint.24 Much of the two period Fisherian analysis extends to the T -period set-

ting assumed in Theorem 1, where the risk free rate in each period Rft is replaced

by the certainty equivalent return R̂pt.

4. KP RATIONALIZATION

Suppose that KP preferences are constructed from the same CES-CRRA time and

risk preference building block utilities as in the time consistent DOCE case and

one assumes that asset returns satisfy ICER. Quite surprisingly, we next show

that the two preference relations which are not ordinally equivalent over the full

choice space, nevertheless result in the same demands.

PROPOSITION 2. Suppose Assumption ICER holds and the consumer has DOCE

utility corresponding to the CES-CRRA form (6)-(7) and solves the consumption-

portfolio problem (10) - (13). Then the optimal demands can also be rationalized

by KP preferences, where

U (ct, x) =−

(
c−δ1
t + β (−δ2x)

δ1
δ2

) δ2
δ1

δ2
and VT (x) =−x−δ2

δ2
.

The proof of Proposition 2 shows that if restricted to the consumption set I as

defined by (28), KP and DOCE preferences coincide. We then show that under

Assumption ICER, the optimal choice for KP utility lies in I .

To see the intuition for why the two utilities are identical for consumption in

I , consider the three period case in Figure 1. Note that since the period 2 DOCE

optimization problem following backward induction is the same as the recursive

KP optimization assuming ICER holds, the period 2 portfolio certainty equivalent

24It is worth emphasizing, as noted in Kimball and Weil (2009), that the DOCE preference model

can sometimes provide more intuitive comparative statics results than the KP formulation given that

the former is defined over (c1, ĉ2) rather than (c1,EV ) in the latter.
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FIGURE 4. Fisherian Risky Consumption-Saving Problem

return R̂p3 is the same across branches and we have

ĉ31 = αc21 and ĉ32 = αc22,
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where α= β
1

1+δ1 R̂
1

1+δ1
p3 .25 Then for the KP case

β

(
π1

(
c−δ1
21 + βĉ−δ1

31

) δ2
δ1 + π2

(
c−δ1
22 + βĉ−δ1

32

) δ2
δ1

) δ1
δ2

= β

(
π1

(
1 + βα−δ1

) δ2
δ1 c−δ2

21 + π2

(
1 + βα−δ1

) δ2
δ1 c−δ2

22

) δ1
δ2

= β
(
1 + βα−δ1

)(
π1c

−δ2
21 + π2c

−δ2
22

) δ1
δ2

and for the DOCE case

β
(
π1c

−δ2
21 + π2c

−δ2
22

) δ1
δ2 + β2

(
π1ĉ

−δ2
31 + π2ĉ

−δ2
32

) δ1
δ2

= β
(
π1c

−δ2
21 + π2c

−δ2
22

) δ1
δ2 + β2

(
π1α

−δ2c−δ2
21 + π2α

−δ2c−δ2
22

) δ1
δ2

= β
(
π1c

−δ2
21 + π2c

−δ2
22

) δ1
δ2 + β2α−δ1

(
π1c

−δ2
21 + π2c

−δ2
22

) δ1
δ2

= β
(
1 + βα−δ1

)(
π1c

−δ2
21 + π2c

−δ2
22

) δ1
δ2 ,

which are the same.

The intuition for Proposition 2 is that when Assumption ICER holds, effectively

no new information is received with the passage of time. Hence over the domain

I , DOCE like KP preferences satisfies time consistency. Also, the preference for

early or late resolution exhibited by KP preferences cannot be distinguished from

TRI for DOCE preferences over I , since Assumption ICER rules out the canoni-

cal early resolution consumption tree (as for example in Figure 3(b)). Temporal

resolution preferences require one to consider consumption trees outside the set

I .26

25Given that the conditions in Theorem 1 hold, DOCE preferences satisfy TC and one obtains the

same solution using backward induction and the standard period 1 optimization.
26To see that an early resolution consumption tree such as Figure 3(b) cannot be in the set I , con-

sider the following example. Assume three time periods and DOCE preferences corresponding to
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Does the fact that over the set I for the tree structure in Figure 1, KP utility be-

comes identical to DOCE utility which satisfies TRI obviate the concern raised in

Section 1 associated with KP utility exhibiting a psychic preference for early or

late resolution? Epstein, Farhi and Strzalecki (2014) raised the possibility that a

KP consumer might be willing to pay an implausibly large timing premium to

have periods 2, ..., T risks resolved in period 2. It should be emphasized that in

this section as well as in the prior section, we have focused on demand behavior

of the CES-CRRA DOCE and KP consumers where asset returns satisfy ICER. In

contrast, the Epstein, Farhi and Strzalecki (2014) paper assumes an equilibrium

asset pricing setting where assumptions are made on the exogenous consump-

tion growth process rather than on asset returns. However, when they assume

the consumption growth process is i.i.d., this implies that at the demand level,

asset returns also satisfy i.i.d. (a special case of ICER). Under this condition, we

have shown that the EZ (special case of KP preferences) and DOCE preferences

are ordinally equivalent for the tree structure in Figure 1. It follows immedi-

ately that under the assumption of i.i.d. consumption growth, the equilibrium

will be identical for economies based on an EZ versus DOCE representative con-

sumer. However in this specific i.i.d. case, where the EIS = 1.5 and RRA = 10,

Epstein, Farhi and Strzalecki (2014, p. 2690) computed a timing premium of ap-

proximately 9.5% for all of the risk to be resolved in the second period, whereas

for the DOCE equilibrium there will be zero timing premium due to the assump-

tion that TRI holds. For, the case of i.i.d. consumption growth, a timing premium

CES time and CRRA risk preferences. In period 1 there is only a risk free asset. In period 2, the

consumer can invest in a risky and a risk free asset. Given this setup, the optimal consumption tree

takes the form of a three period version of the late resolution tree in Figure 3(a). Since c2 is certain,

for the corresponding early resolution tree one must have c21 = c22 = c2. Notice that in the early

resolution tree, all risk is resolved at period two and hence in each sub-branch i, there exists only a

risk free asset with the payoff Rf3i. Assumption ICER implies that Rf31 =Rf32 and hence no matter

how much is saved in period 1, period 2 income will be the same on the upper and lower branches.

Since preferences are also the same on the upper and lower branches, optimal c2 and c3 will also be

the same on the two branches. Thus the restricted domain I will necessarily exclude early resolution

consumption trees with different c3-values.
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of 9.5% of all future consumption is certainly material, but far smaller than in the

case of autocorrelated consumption growth.

Moreover, even if the timing premium becomes small for KP preferences, tem-

poral resolution preferences still interact with SEP. Epstein and Zin (1989) note

that for KP preferences a preference for early or late resolution of risk can con-

found the ability to fully satisfy SEP. Does the fact that KP and DOCE optimal

demands converge when ICER or i.i.d. asset returns holds imply that the con-

founding can be avoided? Epstein and Zin (1989, p. 952) observe (restated in

our notation) that δ2 is interpreted as a risk preference parameter. Fixing the

time preference parameter δ1, an increase in δ2 not only increases risk aversion

but also can affect the KP temporal resolution preference. Epstein and Zin (1989,

p. 952) conclude "One is left wondering how to interpret the comparative statics

effects of a change in [δ2]....[The EIS and RRA measures and attitudes toward

timing] seem intertwined". The fact that a change in risk aversion has identically

the same effects on DOCE and KP asset demands and saving when ICER holds,

does not negate the Epstein and Zin point that a change in δ2 could be the conse-

quence of an increased preference for early resolution and not an increase in risk

aversion. In contrast, because DOCE preferences satisfy TRI, the change in δ2 is

separate from the EIS and is independent of when risk is resolved.27

5. RELAXATION OF ICER

In this section, we relax the assumption that asset returns satisfy ICER (or i.i.d.).

As a result, the DOCE consumer fails to satisfy time consistency and one needs

to consider the resolute (naive) and sophisticated solution techniques to the

intertemporal optimization problem defined toward the end of Subsection 2.2.

When considering a perturbation to asset returns which causes ICER to fail, the

27In Supplemental Appendix B, we provide a specific example, in the context of the classic

consumption-portfolio problem, where there is a confounding of time and risk preferences when

EZW preferences are assumed but not when DOCE preferences are assumed.
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optimal resolute and sophisticated consumption and asset demands will in gen-

eral diverge. To quantify the resulting degree of divergence from time inconsis-

tency, we next introduce an error measure based on the loss in welfare associated

with following sophisticated versus resolute choice.

Based on eqns. (14)-(17) and (20)-(25), respectively, let UR and US denote, re-

spectively, the utility or "welfare" associated with resolute and sophisticated de-

mands, where resolute demand is derived purely based on the period one utility

function and sophisticated choice is derived following backward induction. The

utility of both the optimal resolute and sophisticated consumption trees are com-

puted based on the consumer’s period one DOCE utility (33) given below.28 Then

the error measure is defined as

err =

(
UR

US

)− 1
δ1

− 1, (32)

where the power −1/δ1 is used to normalize the utility function into a homoge-

neous function of degree 1. As mentioned above, when TC holds, resolute and

sophisticated choice will converge and the error measure becomes zero. There-

fore, it is natural to use it to measure the level of divergence from TC. When this

measure becomes small (e.g., the DOCE consumer’s welfare losses are one per-

cent or less), we will say that the consumer’s preferences are almost time consis-

tent and TC almost holds. (We follow similar terminology introduced by Tirole

(2002, p. 645) in his Presidential address on "Rational Irrationality" when consid-

ering time inconsistent preferences.)29

We first show that for the case of three time periods, if the DOCE CES time

preference utility takes the special Cobb-Douglas form, an infinitesimal depar-

ture from ICER results in identical "welfare" associated with DOCE resolute and

28Since in general sophisticated choice will no longer be rationalizable by a well-defined utility

function, we use the consumer’s resolute utility to determine the welfare loss that results from time

inconsistent choices.
29Although our application is not exactly the same, like in Tirole (2002), we consider a setting in

which time inconsistency arises and are concerned with the divergence in utility values from the case

where preferences are time consistent.
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sophisticated demands. Then second, for discrete departures from ICER, nu-

merical analyses verify that the resulting welfare differences associated with TC

not holding exactly can be surprisingly small. Moreover, the assumed restric-

tion on CES time preferences can be relaxed over a range of EIS-values and the

welfare differences can still remain small. DOCE preferences can be almost time

consistent even for a 90 year time horizon (see Figure 6).

5.1 Almost Time Consistent DOCE Preferences

In Section 3, we showed that if a consumer’s preferences over consumption trees

are represented by DOCE utility where the time preference and risk preference

building block utilities, respectively, take the CES and CRRA forms and asset re-

turns characterizing the consumption trees satisfy ICER, the preferences satisfy

TC. That is, the consumer’s preferred consumption trees based on sophisticated

and resolute choice are identical, and hence the utility values of the optimal de-

mands, or "welfare", are the same for the sophisticated and resolute solution

techniques. Here we consider the case where ICER is relaxed and CES-CRRA

preferences continue to be represented by

U =


−c

−δ1
1
δ1

−
T∑
t=2

βt−1 ĉ
−δ1
t
δ1

(δ1 >−1, δ1 ̸= 0)

ln c1 +
T∑
t=2

βt−1 ln ĉt (δ1 = 0)

, (33)

where

ĉt =
(
E
[
c̃−δ2
t

])− 1
δ2 .

Asset markets are assumed to be complete and departures from ICER are eval-

uated in terms of changes in asset returns. The following result considers an in-

finitesimal change in asset returns from the case where ICER holds. Then if the

DOCE CES building block utility takes the special Cobb-Douglas form where the

EIS = 1, the resulting changes in US and UR are equal.

PROPOSITION 3. Assume that the consumer has DOCE utility corresponding to the

CES-CRRA form (33) and chooses over three period consumption trees and asset

https://econtheory.org
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markets are complete. If EIS = 1, an infinitesimal change in returns results in the

welfare of resolute and sophisticated choice satisfying

∂US

∂R(st)

∣∣∣∣∣
R

=
∂UR

∂R(st)

∣∣∣∣∣
R

and
∂US

∂Rf (s
t)

∣∣∣∣∣
R

=
∂UR

∂Rf (s
t)

∣∣∣∣∣
R

when evaluated at returns R that satisfy ICER.30

In the proof of Proposition 3, it will prove convenient to assume that the change

in asset returns in our complete market setting is a consequence of a change in

the contingent claim prices. Such a change will, in general, result in a change

in both the risky and risk free asset returns. The proposition states that any in-

finitesimal change in asset returns from their values when ICER holds results in

no welfare loss to a sophisticated DOCE consumer.

REMARK 4. Despite the EIS being a central parameter in modern dynamic

macro and finance models, no clear consensus exists on its numerical value.

However, the interesting, recent study of Crump, et al. (2022) estimates the EIS

to be between 0.5 and 0.8 with 0.5 being their best estimate. They suggest that the

latter value is consistent with much of the literature. This study utilizes a unique

data set based on individual consumer subjective expectations. Their analysis

replaces the more traditional approach where data is based on realizations. Also,

it should be emphasized that it is based on individual consumer demand be-

havior consistent with the analysis in this paper rather than equilibrium models

calibrations which in many cases report much higher estimates of the EIS. Our

EIS assumption in Proposition 3 lies a bit above the upper bound of the Crump,

et al. (2022) EIS-values. DOCE preferences can be almost time consistent for

smaller values of the EIS (such as 0.5 or 0.25).

30Since conditional demands are the same for naive and sophisticated choice at the prices where

ICER holds, one can follow a similar argument to verify that the derivatives with respect to the asset

returns are also the same for naive and resolute choice.
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REMARK 5. It is easy to see that DOCE preferences are indifferent to correlation of

consumption over time. That is, the consumer is indifferent between two con-

sumption trees that are identical in consumption values except that consump-

tion at different nodes for one tree are independent over time and for the other

tree they are correlated. This is not the case for the EZW preference model. How-

ever, if we compare the i.i.d. asset returns and correlated asset returns (with the

same return values), DOCE preferences will generate different optimal demands

as will EZW preferences. It is important to note that the implausibly large tim-

ing premia referenced in Epstein, Farhi and Strzalecki (2014, p. 2683) is associ-

ated with the high persistence of the equilibrium consumption growth process

(autocorrelation) assumed for instance in the long run risk asset pricing model

of Bansal and Yaron (2004). For the case of the zero persistence associated with

i.i.d. consumption growth, the timing premia are lower but not zero. It should be

emphasized that this analysis is based on an asset pricing equilibrium model and

not the micro demand analysis assumed in this paper as evidenced by the equi-

librium assumptions being made on an exogenous consumption growth process

whereas in our analysis consumption growth is endogenous as a consequence of

assumptions related to asset returns. If one assumes that asset returns are i.i.d.

as in the special case of ICER assumed in prior sections of this paper, consump-

tion growth will also be i.i.d. However, for the discrete perturbations of asset

returns considered in the next subsection, autocorrelated asset returns can be

associated with a persistent consumption growth process.31

5.2 A Numerical Robustness Analysis

In order to apply standard recursive methods, we assume that uncertainty is

Markovian. Suppose time is t= 1, . . . , T. Shocks, st realize in a finite set {1, . . . , S}
and follow a Markov chain with transition π. As in Subsection 2.1, we denote a

node of the event-tree by st since it can be identified by a history of shocks up to

31We thank a referee for stressing the important linkages between the timing premia in the equi-

librium analysis of Epstein, Farhi and Strzalecki (2014) and the demand analysis considered in this

paper.
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some time t. Asset returns at each node st, t= 2, . . . , T can then be written as

R(st) =R(st|st−1).

That is to say, asset returns at all nodes can be summarized by S2 vectors R(s′|s) ∈
RJ
+.

The agent’s maximization problem is described in eqns. (10) - (13) and resolute

and sophisticated choice are defined by eqns. (14)–(17) and (20)-(25). We define

US to be the utility the agent derives from optimal sophisticated choice and UR

to be the utility derived from optimal resolute choice. We consider deviations

from ICER and report welfare losses from sophisticated choice relative to resolute

choice. We report these in consumption equivalent terms based on the error

measure (32) defined above.

Throughout we assume that there are two shocks. We first fix the time horizon,

T = 30, as well as preferences, δ1 = 1, δ2 = 4, β = 1 and assume that shocks are

i.i.d., i.e., π(s|s′) = 0.5 for all s, s′. In this setting, the ICER assumption is satisfied

if R(s′|1) =R(s′|2) for all s′. We assume that markets are complete, i.e., there are

two assets. Without loss of generality we can take the first asset to be risk free, i.e.,

R1(s
′|s) =Rf (s) for all s, s′. Also without loss of generality we can take the second

asset to return zero if the current shock is two, i.e., R2(2|s) = 0 for s= 1,2.32

One important deviation from ICER arises when the risk free rate is stochastic,

i.e., Rf (1) ̸=Rf (2). We assume that

Rf (1) = 1−∆i, Rf (2) = 1+∆i,

and compute the effects of ∆i on our error, err. By the absence of arbitrage, eqn.

(9), we must have 33

1

R2(1|s)
= λs

1

Rf (s)
, λs ∈ (0,1) for s= 1,2.

32Supplemental Appendix C provides a summary of the numerical simulation methodology em-

ployed in our analysis.
33Note that the three parameters ∆i, λ1 and λ2 then pin down all returns on the entire tree where

the return of the risk free asset only depends on the previous node and the return of the risky asset on

the up-branch depends on the previous node and on the down-branch is always zero.
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FIGURE 5. Percentage Error for Different ∆i,λ

For a given ∆i we can then conduct a systematic search of values of λ1 and λ2 that

maximize err. We assume that λ1, λ2 ∈ [0.1,0.9].

Figure 5 depicts a contour plot of percentage errors for different combinations

of ∆i and λ= λ1.34 For each (∆i, λ), the figure shows the largest error that can be

obtained for any λ2 ∈ [0.1,0.9].

In this setting, ICER never holds even when ∆i = 0 because the risky returns are

different for the two states. However, as can be seen in the figure, errors are very

small, in fact they turn out to lie below 0.23 percent. For example, if Rf (1) = 0.9,

Rf (2) = 1.1, i.e., if the (net) risk free rate varies between −10 and 10 percent, it is

clear that ICER must be violated. If, in addition R2(1|1) = 2.25, (i.e., if ∆i = 0.1

and λ = 0.4) the error is below 0.47 percent independent of the risky return in

state 2.

34In Figure 5, as well as Figures ?? and ??, a color scale is provided on the right-hand side to indicate

the size of the errors.
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As the risk free rate across the two shocks becomes more volatile, errors in-

crease and can reach about 8 percent when Rf (1) = 0.7,Rf (2) = 1.3. Remarkably,

errors stay extremely low as long as the difference in risk free rates across the two

states is below 0.2 (∆i = 0.1). For a number of historical periods, this is not an

unrealistic range for variations in the real rate. It is also interesting to note that

in the low interest rate state (s= 1), a high return for the risky asset that pays only

in the low interest rate state leads to the lowest errors (whenever λ = 0.1 errors

are low across different values of ∆i). Our computational results indicate that for

the high interest rate state (s = 2), the opposite holds. The error-maximizing λ2

is typically around 0.1. In the following we will take λ1 = 0.9 and λ2 = 0.1. While

these are typically not the values that maximize the error, they always close to the

error-maximizing values.

5.2.1 Robustness in T , Discounting, Persistence, EIS and RRA As above, we

consider two shocks s = 1,2 and fix δ1 = 1, δ2 = 4. In order to depict how er-

rors change as T , β and the persistence of the shock change,35 it turns out to be

useful to only vary ∆i and report errors for λ1 = 0.9 and λ2 = 0.1. As explained

above, this is close to error-maximizing.

We first examine the effect of the number of time periods on errors. For β = 1

and π(s|s′) = 0.5 we vary T to take the values 5,15,30,60 as well as 90.

Figure 6 shows how the error depends on the length of the agent’s planning

horizon. The error increases substantially as one moves from 5 to 15 periods.

This seems somewhat intuitive as the time inconsistency problem might become

more severe as the planning horizon becomes larger. However, if one consid-

ers T = 30, T = 60 and T = 90, errors increase by much less. In particular, the

difference between T = 60 and T = 90 seems to suggest that errors stabilize and

eventually do not increase anymore with the time horizon.

We next fix T = 30, and examine the effects of β and the persistence of the ex-

ogenous shock on errors. For the left panel, we assume π(s|s′) = 1/2 and for the

right panel we take β = 1.

35In our symmetric setup, we define the persistence of a Markovian shock as the probability of

staying in the same shock.
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FIGURE 6. Error for Different T

(a) (b)

FIGURE 7. Effects of Different β (Left Panel) and Different Persistence (Right Panel)

As can be seen in Figure 7, higher discounting (lower β) decreases the average

error slightly, but the effect is rather small. Higher persistence of the exogenous

shock increases the error – again, the effects are rather small.
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FIGURE 8. Error for Different EIS and RRA

Finally, we consider how the percentage errors corresponding to different val-

ues of ∆i are affected by different combinations of the time preference δ1 and risk

preference δ2 parameters. To facilitate comparisons with the analysis in the next

subsection, we consider the corresponding values of EIS and RRA.

In Figure 8, we assume the EIS equals 0.5 and 1.5, where, respectively, the for-

mer value is suggested in the analysis by Crump, et al. (2022) (referenced in Re-

mark 4 above) and the latter is considered in long run risk asset pricing models

(e.g., Bansal and Yaron (2004)). We also consider RRA values of 5 and 10, where

the latter is employed in Mehra and Prescott (1985) and Bansal and Yaron (2004)

and the former value is a more moderate level of risk aversion. The figure demon-

strates that for EIS = 0.5, the percentage error is relatively small even as ∆i in-

creases. When EIS = 1.5, the errors become quite large. The figure also indicates

that the error can be quite sensitive to an increase in the RRA when the higher

value of EIS is assumed.
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For asset demand and saving applications, it is important to evaluate whether

the specification of the price process (characterized, for instance, by our assumed

values of ∆i and λ) assumed in this section are realistic. In the next subsection,

we revisit the crucial role played by the assumed (EIS,RRA) on the size of the

welfare loss associated with TC not holding exactly.

5.2.2 Revisiting the Respective Roles of EIS and RRA To continue employing

the simple 2-state Markov environment considered in the prior subsection, we

follow the analysis in Melino and Yang (2003)36. They construct a 2 by 2 stochas-

tic discount factor that can match the historical first two moments of the equity

return and the risk free rate. They assume a Markov transition matrix

π =

[
0.43 0.57

0.57 0.43

]
.

From this and from the stochastic discount factor in Melino and Yang (2003), we

can construct Rf (1) = 1.0641 and Rf (2) = 0.9519 (so ∆i is around 0.06 in this cal-

ibration) and λ1 = 0.3884 and λ2 = 0.1480. It is clear from our analysis above that

the resulting returns, while not satisfying ICER, do not lead to the largest errors.

Since Melino and Yang (2003) calibrate to yearly data, we take T = 60 and β = 0.96.

Figure 9 shows the resulting errors for a range of EIS and RRA values. Cor-

responding to different (RRA,EIS)-combinations, we plot multiple level curves

each of which is characterized by constant percentage errors or welfare losses

associated TC not holding exactly. It should be noted that the lowest plotted

level curve is associated with the very small error of less than 2/3 of 1 percent.

The dot corresponding to RRA= 2 and EIS = 0.5 corresponds to the case where

δ1 = δ2 = 1 and the DOCE consumer’s preferences are characterized by the EU

special case and resolute and sophisticated choice are the same. As a result, TC

36The simulations in this subsection are based on the data in Melino and Yang (2003), since to our

knowledge it is the only published paper that calibrates a finite Markov chain of Arrow prices. We

acknowledge that our assumption of a 2 state process is overly simplistic, but it allows us to use the

Melino and Yang (2003) calibration, which is a bit of a benchmark.
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FIGURE 9. Error Level Curves: Different (RRA,EIS)

holds and the error equals 0. Indeed, one can imagine a partial level curve pass-

ing through this point associated with different RRA and EIS combinations in

the positive orthant where the EU case holds. Given that a number of asset pric-

ing analyses, such as Bansal and Yaron (2004), focus on the case where RRA= 10,

or higher, we consider four special cases with this value of RRA and different val-

ues of the EIS. These points correspond, respectively, in Figure 9 to an EIS of

0.5, 0.75, 1.5 and 2.0 and are identified by the four dots associated with RRA= 10.

The welfare losses of departures from TC not holding exactly for these four points

is given in the box in the northwest corner of the figure. It can be seen that for

the range of EIS recommended in Crump, et al. (2022), the errors are one per-

cent or smaller. For the case of the EIS and RRA values assumed in the long

run risk literature, the errors do rise, but only to about 7%. These simulation re-

sults suggest that perhaps the deviations from TC holding exactly might not be
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terribly concerning for the consumption and asset demand optimization of con-

sumers following sophisticated choice especially if the EIS is below one, as is of-

ten assumed in demand analyses. For the case of long run risk models where the

EIS = 1.5 and RRA= 10, it would seem highly desirable to extend the analysis in

this paper to the analysis of equilibrium asset prices based on the assumption of

a DOCE representative agent following sophisticated choice. In particular, is the

resulting equity risk premium materially smaller than for the case of EZ prefer-

ences? This indeed would be consistent with a smaller timing premium and with

DOCE preferences satisfying TRI.

6. CONCLUDING COMMENTS

In this paper, we provide conditions that ensure that CES-CRRA DOCE prefer-

ences exhibit TC, SEP and TRI on a restricted domain of consumption trees cor-

responding to the optimal solution of the consumption-portfolio problem. Un-

der these conditions, it is possible to extend the classic Fisherian consumption

saving analysis to a setting with risky and risk free investment opportunities. The

same conditions also imply that if the KP time and risk preference building block

utilities are the same as for the DOCE preferences, the KP and DOCE optimal de-

mands become identical. Although the assumption that asset returns are ICER

or i.i.d. is quite strong, it can be viewed as the cost of being able to derive condi-

tions on time and risk preference parameters in DOCE saving and portfolio de-

mand comparative statics independent of temporal resolution preferences. We

also identify conditions under which CES-CRRA DOCE preferences can continue

to be almost time consistent when considering quantitatively reasonable depar-

tures from ICER.

Two potential extensions of the analysis in this paper would seem to be of in-

terest. As we have shown, when the assumption of i.i.d. or ICER asset returns

does not hold, EZ and DOCE preferences generate different optimal demands.
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When the conditions discussed in the prior section are satisfied and the diver-

gence from TC holding can be viewed as small, it would seem worthwhile to ex-

plore the feasibility of deriving a DOCE equilibrium model. For example, is it pos-

sible to construct a long run risk model based on CES-CRRA DOCE preferences

where the representative agent follows sophisticated choice with desirable prop-

erties such as a zero timing premium to resolve all of the risk in the second time

period? 37 For the case where the welfare loss due to divergence between res-

olute and sophisticated demands becomes material, it would also seem to be of

interest to explore how to trade off that loss with the difference in timing premia

between EZ and DOCE equilibria.

The second relates to the observation in Section 1 that in intertemporal de-

mand problems the presence of TC behavior does not depend just on prefer-

ences, but prices (or asset returns) can also play a crucial role. This differs from

typical decision theoretic analyses such as in KP and Johnsen and Donaldson

(1985), where the conditions for preferences to satisfy TC are implicitly assumed

to hold for all prices. Our key condition ICER has been shown essentially to be a

restriction on return distributions or, for complete markets, on contingent claim

prices. It would be interesting to consider more generally when such cases can

arise. Consider the variation of HARA preferences in Theorem A.1 in Supple-

mental Appendix A where U takes the CES form and V takes the CARA form. Our

result does not extend to this case. However, it can be verified that for a simpli-

fied tree structure and under additional restrictions including βRf3 = 1, a con-

sumer with DOCE preferences becomes time consistent. It is interesting to note

that this particular combination of time and risk preferences is assumed in Weil

(1993) and more recently in variations of Hansen and Sargent (1995) preferences

such as Tallarini (2000). Collectively, these results suggest the potential value of

future research into the general question of joint restrictions on preferences and

prices such that dynamic choice behavior is time consistent.

37To the extent that the equilibrium model is characterized by autocorrelated consumption growth,

the interrelations between temporal resolution and correlation preferences raised by Stanca (2023)

may become relevant.
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APPENDIX A: PROOF OF PROPOSITION 1

Generalizing the example in Subsection 3.1 and denoting by α(st) = c(st)/c(st−1),

U(α|sτ ) = u(c(sτ )) + βu ◦ V −1

(∑
sτ+1

π(sτ+1|sτ )V (α(sτ+1)c(sτ ))

)
+ . . .+

βT−1u ◦ V −1

(∑
sτ+1≻sτ π(s

τ+1|sτ ) . . .
∑

sT≻sτ π(s
T |sT−1)

V (α(sτ+1) · . . . · α(sT )c(sτ ))

)

= u(c(sτ )) + βu ◦ V −1

 ∑
sτ+1≻sτ

π(sτ+1|sτ )V (α(sτ+1)c(sτ ))

Kτ+1,

where Kτ+1 is recursively defined as

KT = 1+ βu ◦ V −1

 ∑
sT≻sT−1

π(sT |sT−1)V (α(sT ))


and

Kt = 1+ βu ◦ V −1

 ∑
st≻st−1

π(st|st−1)V (α(st))

Kt+1

for t= τ + 1, . . . T − 1. Note that c ∈ I ensures that Kt does not depend on st.

By the same argument as in the example, it is now clear that if α is preferred

to α̃ at τ it must be preferred at τ − 1 and, by induction, preferred at any τ − i,

i= 1, . . . , τ − 1.

APPENDIX B: PROOF OF THEOREM 1

In order to facilitate the proof, we first introduce Assumption ICER* and show

that it is equivalent to ICER. Define recursively for each st, t = T − 1, T − 2, . . .,

n̂(st) ∈RJ to be the unique solution to the J equations

∑
st+1≻st

π(st+1|st)R(st+1)V ′

 R(st+1) · n̂(st)
1 +

∑
j

n̂j(s
t+1)

=
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1

β(u ◦ V −1)′

 ∑
st+1≻st

π(st+1|st)V

 R(st+1) · n̂(st)
1 +

∑
j

n̂j(s
t+1)



,

where n̂(st) = n(st)/c(st) and n̂(sT ) = 0 for all sT .

Assumption ICER* Assume that for all st, t < T ,

∑
st+1≻st

π(st+1|st)V

 R(st+1) · n̂(st)
1 +

∑
j

n̂j(s
t+1)

=Kt,

where Kt only depends on t.

To show the equivalence of ICER* and ICER, it suffices to show that under ICER,

ñj(s
t) (as defined in eqn. (30)) is constant across all st for given t. By induction,

we consider first t= T − 1. Homotheticity ensures that ICER can be written as∑
st+1≻st

π(st+1|st)R(st+1) · ñ(st)V ′ (R(st+1) · ñ(st)
)
= K̃t,

which is independent of st. Taking the J equations in (30) and weighting each j

with ñj(s
t) and summing up, this implies that

∑
j ñj(s

t) must be independent of

st, for t= T −1. But then the same argument applies for each t < T and ICER and

ICER* are equivalent conditions.

Next, we prove that ICER* together with homothetic utility is sufficient. The

following first order conditions are necessary and sufficient for optimization at

sτ for consumption at some future node s̄t ⪰ sτ

V ′(c(st))
(
u ◦ V −1

)′∑
st≻sτ

π(st|sτ )V (c(st))

=

β(u ◦ V −1)′

 ∑
st+1≻sτ

π(st+1|sτ )V
(
c(st+1)

)
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∑
st+1≻st

R(st+1)π(st+1|s̄t)V ′ (c (st+1
))

, (34)

for all st, t < T . Since u(.) and V (.) are assumed to be homothetic, it is clear

that these necessary and sufficient first order conditions will be satisfied for some

α(st) that satisfy ICER*, and that these α(st) do not change with τ . Therefore the

choice does not change with τ and choices are time consistent.

To prove necessity of homothetic utility given ICER*, consider the simplified

case of three periods, t = 1,2,3, based on a version of the consumption tree de-

picted in Figure 1 where there are just two branches. Suppose markets are com-

plete. To satisfy Assumption ICER* suppose that the prices of the contingent

claims are identical and denoted by p(2).

The first order conditions for optimal choice at t = 2 are p(2)u′(c2s) = βu′(c3s)

(s= 1,2) and, at t= 1, planning for t= 2, are

p(2)V ′(c2s)(u ◦ V −1)′

(∑
s

πsV (c2s)

)
= β(u ◦ V −1)′

(∑
s

πsV (c3s)

)
V ′(c3s).

The first equation implies c3s = u′−1 (p(2)u′(c2s)/β) and substituting this into

the second equation, we obtain

p(1)V ′(c2s)(u ◦ V −1)′

(∑
s

πsV (c2s)

)
=

β(u ◦ V −1)′

(∑
s

πsV

(
u′−1

(
p(1)

β
u′(c2s)

)))

V ′
(
u′−1

(
p(2)

β
u′(c2s)

))
. (35)
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Denote the price p(2) simply by p. Then we consider variations in p(2) = p as

well as first period prices p(1) that keep second period consumption fixed. Tak-

ing the derivative with respect to p on both sides and then setting p= β, one ob-

tains

1 =

(u ◦ V −1)′′

(∑
s

πsV (c2s)

)∑
s

πs
(
V ′(c2s)u

′−1′ ◦ u′(c2s)u′(c2s)
)

(u ◦ V −1)′

(∑
s

πsV (c2s)

)

+
V ′′(u′−1′u′(c2s))u

′(c2s)

V ′(c2s)
.

Taking derivatives with respect to c2s, s= 1,2, we obtain38

d

dc

f ′−1′(g(c))g(c)

f(c)
= 0,

where f(c) = V ′(c) and g(c) = u′(c). Since g−1′(g(c))g′(c) = 1, we obtain

d

dc

f ′(c)g(c)

g′(c)f(c)
= 0.

Consider the following ordinary differential equation

d

dc

(
f ′ (c)g (c)

f (c)g′ (c)

)
= 0.

We have

f ′ (c)g (c)

f (c)g′ (c)
=K1,

where K1 is a constant. Therefore,

f ′ (c)

f (c)
= (lnf (c))′ =K1

g′ (c)

g (c)
=K1 (lng (c))

′ ,

implying that lnf (c) = K1 lng (c) + K2, where K2 is a constant. Thus we have

f (c) =K3 (g (c))
K1 , where K3 is a constant.

38This is possible since we can vary the prices of both contingent claims at t= 1 independently.
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Assuming K > 0, we can write V ′(c) = u′K and V ′−1(x) = u′−1(x1/K). Substitut-

ing this into (35), we obtain

p(u ◦ V −1)′

(∑
s

πsV (c2s)

)
= β(u ◦ V −1)′

(∑
s

πsV

(
u′−1

(
p

β
u′(c2s)

)))(
p

β

) 1
K

.

Since u ◦ V −1(x) = xν for some ν, it follows that the above can only hold if

u
(
(u′)

−1
(x)
)

is homothetic. In this case, we can write u
(
(u′)

−1
(x)
)
= axδ. Then

we have (u′)
−1

(x) = u−1
(
axδ
)

. Assuming (u′)
−1

(x) = y, then

u−1
(
axδ
)
= y⇔ x=

(
u (y)

a

) 1
δ

.

Therefore, we have u′ (x) = a (u (x))δ. Thus if δ ̸= 1, we have

d (u (x))1−δ

dx
= a (1− δ)⇒ u (x) = (a (1− δ)x+ c)−

1
1−δ .

This corresponds to the DARA or IARA case of the HARA class. If δ = 1,

d lnu (x)

dx
= a (1− δ)⇒ u (x) = exp (a (1− δ)x+ c) .

A simple numerical example can show that DARA and IARA utilities within the

HARA class do not produce time consistent demand unless the conditions of

Theorem A.1 in Supplemental Appendix A hold.

In the last step we prove that under homothetic utility, the assumption ICER*

is necessary for time consistency. Suppose ICER* does not hold and consider the

first order conditions for optimal choice at some date τ of assets at some future

t > τ

V ′(c(st))
(
u ◦ V −1

)′∑
st≻sτ

π(st|sτ )V (c(st))

=

β(u ◦ V −1)′

 ∑
st+1≻sτ

π(st+1|sτ )V
(
c(st+1)

) ∑
st+1≻st

R(st+1)π(st+1|st)V ′ (c (st+1
))

.
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It is clear that they can only be satisfied for the same choices c(st), c(st+1), st+1 ≻
st, at two different dates τ, τ ′ if the ratio of the terms in the large parentheses are

the same, i.e., if

∑
st≻sτ

π(st|sτ )V (c(st))∑
st+1≻sτ

π(st+1|sτ )V
(
c(st+1)

)
is independent of τ . But this implies that c ∈ I which can only hold if ICER* or

equivalently ICER holds. This completes the proof.

APPENDIX C: PROOF OF PROPOSITION 2

The first key insight is that DOCE and KP preferences generate identical utility

functions over I . To see this, let α(st) = c(st)/c(st−1) and recall that DOCE utility

can be written as follows

U(α|sτ ) = u(c(sτ )) + βu ◦ V −1

 ∑
sτ+1≻sτ

π
(
sτ+1|sτ

)
V (α(sτ+1)c(sτ ))

+ . . .+

βT−1u ◦ V −1

(∑
sτ+1≻sτ π

(
sτ+1|sτ

)
. . .
∑

sT≻sT−1 π
(
sT |sT−1

)
V (α(sτ+1) · . . . · α(sT )c(sτ ))

)

= u(c(sτ )) + βu ◦ V −1

 ∑
sτ+1≻sτ

π
(
sτ+1|sτ

)
V (α(sτ+1)c(sτ ))

Kτ+1,

where Kτ+1 is recursively defined as

KT = 1+ βu ◦ V −1

 ∑
sT≻sT−1

π
(
sT |sT−1

)
V (α(sT ))


and

Kt = 1+ βu ◦ V −1

 ∑
st≻st−1

π
(
st|st−1

)
V (α(st))

Kt+1.
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Similarly KP utility can be written as

UKP (c|sτ )

=−c(sτ )−δ1

δ1
−

β

 ∑
sτ+1≻sτ

π(sτ+1|sτ )UKP (c|sτ+1)
− δ2

δ1


δ1
δ2

δ1

=−c(sτ )−δ1

δ1
− β

c(sτ )−δ1

δ1

( ∑
sτ+1≻sτ

π(sτ+1|sτ ))α(sτ+1)−δ2

) δ1
δ2

1 + β

( ∑
sτ+2≻sτ+1

π(sτ+2|sτ+1)α(sτ+2)−δ2

) δ1
δ2

(1 + . . .)




,

which, when multiplied out, is identical to DOCE utility. It remains to be shown

that optimal choice under KP utility lies in I . The necessary and sufficient con-

ditions for optimal choice can be written as

u′(c(st)) = β(u ◦ V −1)′

 ∑
st+1≻st

V ◦ U(c|st+1)


∑

st+1≻st

π(st+1|st)R(st+1)(V ◦ u−1)′U(c|st+1)u′(c(st+1)).

At T − 1 KP and DOCE coincide, hence we can substitute for U and we obtain

that
∑

sT−1≻sT−2 π(sT−1|sT−2)V (α(sT−1)) is constant for all sT−2. By induction

this is then true for all t and hence KP and DOCE preferences generate the same

demands.

APPENDIX D: PROOF OF PROPOSITION 3

Since markets are complete, one can equivalently solve the dynamic choice prob-

lem in the contingent claim setting. Any infinitesimal perturbation in returns is

equivalent to an infinitesimal perturbation to contingent claim prices. Suppose

https://econtheory.org


Submitted to Theoretical Economics Time Consistency and Separation 51

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

we assume the case of one risky and one risk free asset, then

p31 =
ξf31p− ξ32pf
(ξ31 − ξ32)ξf31

and p32 =
ξ31pf − ξf31p

(ξ31 − ξ32)ξf31
,

and if we only change p31 and keep p32 fixed, in general both asset prices and

returns will change. Without loss of generality, consider a four-branch tree and

assume that only the price p31 for good c31 changes.39 When ICER holds, we have

shown that (c1, c21, c22, c31, c32, c33, c34) are the same for resolute and sophisticated

choice. For the four-branch tree resolute choice, the budget constraint in period

one is

c1 + p21 (c21 + p31c31 + p32c32) + p22 (c22 + p33c33 + p34c34) = I.

Thus we can define the resolute indirect utility as

WR(p, I) =max
c≥0

U(c) s.t.

c1 + p21 (c21 + p31c31 + p32c32) + p22 (c22 + p33c33 + p34c34) = I.

By the envelope theorem,

∂WR

∂p31
= λRp21c31,

where λR is the Lagrange multiplier. The first-order conditions (which are neces-

sary and sufficient in this setting) imply

∂U

∂c31
= β2ĉδ23 π31c

−1−δ2
31 = λRp21p31,

where

ĉ3 =
(
π21

(
π31c

−δ2
31 + π32c

−δ2
32

)
+ π22

(
π33c

−δ2
31 + π34c

−δ2
32

))− 1
δ2 .

39For the tree with more than four branches, the following calculations can be trivially generalized.

The final expression for
(
∂US/∂p31

)
/
(
∂UR/∂p31

)
is the same as the four-branch tree case except

that the definition for ĉ3 requires appropriate modification.
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Therefore, we have

∂WR

∂p31
=

β2ĉδ23 π31c
−1−δ2
31 p21c31

p21p31
=

β2π31ĉ
δ2
3 c−δ2

31

p31
.

For sophisticated choice, in period two, for the upper branch, the indirect utility

function at the 21 node is

WS21 = max
(c21,c31,c32)≥0

ln c21 −
β ln

(
π31c

−δ2
31 + π32c

−δ2
32

)
δ2

s.t.

c21 + p31c31 + p32c32 = I21

The envelope theorem implies

∂WS21

∂p31
= λSc31.

The first order conditions for optimal choice at node (21) imply

∂U

∂c31
= β2ĉδ231π31c

−1−δ2
31 = λSp31,

where

ĉ31 =
(
π31c

−δ2
31 + π32c

−δ2
32

)− 1
δ2 .

Since we assume ln time preference utility, optimal resolute consumption at

node (21) will remain unchanged. By the envelope theorem any changes in opti-

mal sophisticated choice in period one will have no effect on welfare. Therefore,

if we define sophisticated indirect utility as WS(p, I), we have

∂WS(p, I)

∂p31
=

∂WS21(p, I)

∂p31

ĉδ23

ĉδ231
.

We obtain

∂WS

∂p31
=

β2π31ĉ
δ2
3 c−δ2

31

p31
=

∂WR

∂p31
.
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