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Abstract

This paper examines when the public provision of information in search

markets improves welfare. I consider a two-sided frictional search market in

which buyers match with vertically differentiated sellers. The market is seg-

mented into submarkets based on seller types. Such segmentation serves as a

public signal that buyers use to direct their search. Given a segmentation, I

characterize both the socially efficient and the equilibrium allocation of buyers

across submarkets, and identify a Hosios-type condition under which the equi-

librium allocation is efficient. I then analyze the design of surplus-maximizing

segmentations, showing that the nature of search externalities determines when

the constrained-efficient segmentation fully separates seller types or pools them

into at most a binary partition.
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1. Introduction

Agents in search markets frequently rely on publicly available information to guide

their search for desirable goods and services. For example, firms often recruit job

candidates from reputable universities; shoppers on an online marketplace, such as

Amazon, filter for highly rated products; and health insurance enrollees consult review

aggregators like Vitals or Healthgrades to identify top-rated physicians. In each of

these settings, agents use information about the quality of goods or services to segment

the market into smaller submarkets before searching for a match in one of these

submarkets. I refer to such information, which aids agents in directing their search

prior to finding a match, as ex-ante information.

In single-agent search environments, the social value of information is unambigu-

ous: more precise ex-ante information improves efficiency by facilitating matches be-

tween agents and higher-quality goods and services. In real-world search markets, how-

ever, many agents compete for limited resources. Universities graduate a finite number

of students each year, online marketplaces have limited inventories of products, and in-

surance networks feature a restricted pool of physicians. Moreover, these resources are

typically vertically differentiated—firms prefer more productive employees, shoppers

value higher-quality products, and patients seek more competent physicians—with

agents vying for higher-quality matches. In such environments, agents’ search deci-

sions create externalities that influence the outcomes of others. Furthermore, these

search externalities are shaped by the publicly available ex-ante information that

guides the agents’ strategic decisions. Thus, a central question arises: does the public

provision of more precise ex-ante information enhance welfare in search markets with

externalities?

This paper addresses this question by considering a two-sided market populated

by a finite measure of buyers and sellers, where each buyer (he) has a unit demand,

and each seller (she) has a unit supply. The model has three defining features: First,

sellers are vertically differentiated, with a seller’s private type determining the quality

of the good she supplies. Second, buyers observe a public signal about seller types,

which they use to guide their search. Third, search is frictional, with the likelihood of

meeting a trading partner determined by the market tightness—the ratio of buyers to

sellers. The meeting function, which governs this frictional search, encapsulates two

key externalities: a thick market externality, where a tighter market facilitates more
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meetings between buyers and sellers, and a congestion externality, where a tighter

market intensifies competition among buyers, thereby reducing the probability that

an individual buyer meets a seller. These opposing forces jointly determine equilibrium

and welfare outcomes in search markets.

Public ex-ante information is modeled as a segmentation of the search market

into a collection of submarkets. Sellers are allocated to these submarkets depending

on their types, possibly with some randomization. I consider any flexible segmentation

of the market à la Bergemann et al. (2015). Based on this segmentation, buyers form

beliefs about the composition of seller types in each submarket. Each buyer then

selects a submarket and engages in frictional search for a seller within it. If the buyer

meets a seller, he observes her type, and the two bargain over the terms of trade.

The first set of results characterizes both the socially efficient and equilibrium

allocations of buyers across submarkets for any fixed market segmentation. From

a welfare perspective, tighter submarkets are advantageous because they facilitate

more meetings, thereby increasing the overall volume of trade. However, with a finite

measure of buyers, raising tightness in one submarket necessarily reduces it elsewhere.

The unique socially efficient allocation therefore balances the thick market externality

created by tighter submarkets against the expected surplus generated within each

submarket.

In contrast, the unique equilibrium allocation arises from how buyers trade off the

congestion in each submarket against the share of surplus they expect to capture in

that submarket conditional on trade. In equilibrium, buyers follow a cutoff strategy

based on a reservation value. They avoid submarkets where the expected payoff falls

below this threshold. Among the remaining submarkets, those offering higher payoffs

conditional on trade attract more buyers until their level of congestion precisely offsets

their potential gains from trade.

Interestingly, a higher reservation value leads to lower buyer welfare. When buyers

adopt a higher reservation value, they enter fewer submarkets, which increases the

congestion within the submarkets they do join. This reduces the probability that

any one buyer meets a seller, thereby lowering their average payoff.1 In equilibrium,

however, the reservation value itself must be consistent with buyers’ average payoff,

giving rise to a rational expectations condition.

1This contrasts with single-agent search environments, where a higher reservation value does not
generate congestion externalities and typically corresponds to a higher expected payoff.
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This decentralized decision-making often leads to an inefficient allocation for two

reasons: First, the seller types that generate the greatest total surplus may differ from

those that provide buyers with the largest share of surplus, leading to a misalignment

between the preferences of buyers and those of a social planner. Second, even when

the preferences of the planner and the buyers coincide, buyers may over-concentrate

in submarkets containing high-type sellers, creating excessive congestion. This mis-

allocation highlights the dual role of information: while it helps buyers direct their

search, it could also amplify the negative effects of congestion externalities.

Despite these two channels for inefficiencies, I identify a necessary and sufficient

condition under which the socially efficient allocation of buyers is obtained as an

equilibrium outcome. The condition, similar to Hosios (1990), relates the efficiency

of decentralized search to the elasticity of the meeting function and the bargaining

power of buyers. When satisfied, this condition ensures that buyers internalize the

congestion externalities they impose, aligning their private incentives with the plan-

ner’s objectives and yielding an efficient equilibrium outcome. However, this condition

is satisfied only in knife-edge cases, implying that equilibrium outcomes are inefficient

in most practical settings.

The second set of results examines the design of surplus-maximizing market seg-

mentations under two settings: one where buyers’ allocations across submarkets is

socially efficient (the first-best segmentation) and another where buyers’ allocations

reflect equilibrium behavior (the constrained-efficient segmentation). The first-best

segmentation reflects the planner’s ability to directly control both the segmentation

and the allocation of buyers, while the constrained-efficient segmentation accounts

for buyers’ strategic responses to the public provision of ex-ante information.

When buyers are efficiently allocated across submarkets, I show that a perfect

market segmentation, where each seller type is assigned to a unique submarket, con-

stitutes a first-best market segmentation. Intuitively, because more meetings lead to

more trade, and because trade with a higher seller type generates a larger surplus, the

socially efficient allocation of meetings must increase in seller types. Concentrating

buyers into a single submarket for each seller type then allows the planner to achieve

a desired volume of meetings while minimizing the number of buyers required. This

segmentation enables the planner to tailor the allocation of meetings to seller types

while fully leveraging the thick market externality.

Unlike the first-best setting, the constrained-efficient case requires the planner to
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account for buyers’ strategic responses to the ex-ante information revealed by the mar-

ket segmentation. This interdependence between segmentation design and equilibrium

behavior complicates the characterization of the optimal segmentation. Nevertheless,

under mild assumptions on the bargaining power of buyers, I show that the problem

can be decomposed into two distinct steps: an information design problem, where

the planner determines what information to reveal about seller types, and a fixed-

point problem, which ensures consistency between the segmentation and the buyers’

equilibrium responses. This decomposition reveals that constrained-efficient market

segmentations take on a monotone partition structure (Kleiner et al., 2021; Arieli

et al., 2023).

Further refinement to the structure of constrained-efficient segmentations arises

under additional assumptions regarding the nature of congestion externalities. If con-

gestion externalities worsen gradually as market tightness increases, perfect segmen-

tation constitutes a constrained-efficient segmentation. In this case, a fully directed

search market obtains, where buyers have complete ex-ante information about seller

types. In contrast, if congestion externalities worsen rapidly, the constrained-efficient

segmentation takes the form of a binary partition. Sellers are grouped into two broad

categories: seller types above a threshold are pooled into a “high” submarket, while

types below the threshold are pooled into a “low” submarket. In this case, search is

partially-directed with all buyers joining only the high submarket and engaging in

random search within it.

These findings underscore the critical role of thick market and congestion exter-

nalities in determining the welfare consequences of more precise ex-ante information.

When congestion externalities play a more limited role in search decisions, more

informative public signals improve welfare, making perfect segmentation constrained-

efficient. Conversely, when congestion externalities dominate, the constrained-efficient

segmentation withholds substantial information from the buyers, demonstrating the

potential negative welfare implications from the public provision of more precise ex-

ante information in search markets with externalities.

1.1. Related Literature

The role of information in search markets can be broadly divided into two categories.

The first is ex-ante information, where agents observe signals prior to meeting a

potential match and use this information to guide their search strategies. The second
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is interim information, where agents observe signals after meeting a potential match

and use this information to determine the terms of trade.

This paper focuses on the former, and specifically, considers the role of ex-ante

information in a market for search goods—goods whose quality is revealed upon

inspection.2 In this context, Anderson and Renault (2006), Choi et al. (2019), and

Lyu (2023) analyze a monopolist’s optimal provision of information when buyers use

it to decide between visiting the monopolist or taking their outside option. Similarly,

Choi et al. (2018) explores the role of ex-ante information in oligopoly markets for

horizontally differentiated search goods. However, these studies focus on settings with

either a single buyer or sellers without capacity constraints, thereby abstracting away

from search externalities. This paper addresses this gap by focusing on how ex-ante

information interacts with thick market and congestion externalities in markets with

multiple buyers and capacity-constrained sellers.3

This work also connects to the extensive literature on competitive search markets,

where sellers post prices that buyers use to direct their search.4 Examples include

search for exchange goods (Butters, 1977; Peters, 1991), labor markets (Montgomery,

1991; Moen, 1997; Mortensen and Wright, 2002), and markets with two-sided het-

erogeneity (Shi, 2002; Shimer, 2005; Eeckhout and Kircher, 2010a). A central insight

from this literature is that equilibrium outcomes are typically efficient because posted

prices internalize search externalities.

In contrast, this paper considers directed search driven solely by information rather

than posted prices. Terms of trade are instead determined via bargaining once a buyer

and seller meet,5 as in Diamond (1982a), Mortensen (1982), and Pissarides (1985).

2In this paper, a buyer observes a seller’s type after the two meet, which reveals the quality of the
seller’s product.

3Of course, other types of externalities could be considered. For example. Vellodi (2018) considers
the role of ex-ante information in the entry and exit decisions of sellers in a search market, and
shows that suppressing information can incentivize the entry of new sellers and delay the exit of
incumbents.

4While the labor and matching literature often uses the terms directed search and competitive search
interchangeably, I follow Wright et al. (2021) in distinguishing between the two. As per their
definition, “Directed search means agents see some, although perhaps not all, characteristics of
other agents, and based on that choose where to look for counterparties,” while “competitive search
equilibrium means that agents on one side of the market post the terms of trade, while agents on
the other side observe what is posted and direct their search accordingly.” Thus, competitive search
is a special case of directed search.

5One such environment is the labor market for high-skilled workers: firms often direct their search by
recruiting candidates from top universities, but salaries are negotiated after a successful completion
of the interview process. Similarly, the posted-price framework is unsuitable in environments where
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Consequently, prices cannot fully internalize the search externalities unless a Hosios

condition (Hosios, 1990) is satisfied. Hence, this paper demonstrates that beyond

price-based competitive search, directed search can give rise to inefficient equilibrium

outcomes. Furthermore, it identifies conditions under which information design can

mitigate these inefficiencies, offering insights into the optimal provision of ex-ante

information in search markets.

Few papers explore directed search beyond price-based competitive search. The

most relevant work in this regard is Menzio (2007), who examines a private-values

labor market where informed firms send cheap-talk messages that uninformed work-

ers use to direct their search. Once a trading partner is met, the terms of trade are

determined via bargaining. Menzio (2007) shows that while informative cheap-talk

equilibria exist, all equilibrium outcomes are inefficient.6 These inefficiencies stem

from two interdependent externalities: search externalities on the workers’ side of the

market, and signaling externalities on the firms’ side, which arise because the infor-

mational content of a firm’s cheap-talk message depends on the messaging strategies

of other firms.

In this paper, however, the market segmentation (and thus, its informational con-

tent) is taken as exogenously given by both buyers and sellers, reflecting the increas-

ingly data-driven segmentation of markets based on certification or reviews rather

than cheap talk. As a result, signaling externalities are absent from my model, lead-

ing to a clean analysis of how information interacts with search externalities. This, in

turn, allows me to identify conditions under which efficient and equilibrium outcomes

coincide.

Of course, directed search need not be based solely on posted prices or information;

rather, it may be based on both. Eeckhout and Kircher (2010b) show that when

buyers and sellers meet bilaterally, it is efficient to perfectly segment the market

by type, and that this outcome can be decentralized by having buyers direct their

search based on both the market segmentation and sellers’ posted prices. Similarly,

Cai et al. (2017) demonstrate that bilateral meetings are both sufficient and necessary

for perfect market segmentations to emerge as socially efficient. In this respect, my

sellers lack commitment power, or where prices are fixed exogenously.
6When the trading mechanism is a first-price auction rather than bargaining, Kim and Kircher
(2015) demonstrates the existence of a fully revealing and efficient cheap-talk equilibrium in a
private-values setting, whereas Kim (2012) shows that no such equilibrium exists in a setting with
vertical differentiation.
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finding that perfect segmentation is efficient is not surprising. However, I show that

this outcome can be implemented as an equilibrium if and only if the Hosios condition

identified in the paper is satisfied.

Finally, this paper loosely relates to the body of work on the role of interim infor-

mation, especially in markets for experience goods—goods whose quality is revealed

only upon consumption. In the context of large search markets, Lauermann (2012)

and Lester et al. (2019) demonstrate the negative welfare implications of interim in-

formation provision. A growing body of work also considers the design of interim in-

formation for experience goods in single-agent settings: Romanyuk and Smolin (2019),

Dogan and Hu (2022), Hu (2022), Mekonnen et al. (2023), and Sato and Shirakawa

(2023) all consider centralized provision of interim information, while Board and Lu

(2018), Au and Whitmeyer (2023), Mekonnen and Pakzad-Hurson (2024), and He and

Li (2023) consider competitive provision of information. Beyond search markets, the

welfare implications and the design of interim information has also been analyzed in

various other contexts, including price-discriminating monopoly (Bergemann et al.,

2015), differentiated Bertrand competition (Elliott et al., 2021), bilateral matching

markets Condorelli and Szentes (2023), and many-to-one matching markets Li (2023).

The remainder of the paper is structured as follows: I describe the model in Sec-

tion 2, and derive the first-best outcome in Section 3. I then characterize the equi-

librium outcome for a fixed market segmentation in Section 4. Finally, Section 5

discusses the efficiency properties of equilibrium outcomes and tackles the design of

a constrained-efficient market segmentation. All proofs are in the Appendix.

2. Model

A two-sided market is populated by a unit mass of homogeneous buyers on one side

and a mass k > 0 of heterogeneous sellers on the other. Each buyer (he) has a unit

demand for a good, and each seller (she) has a unit supply. A seller’s type, denoted by

θ, captures the quality of her good. The type space Θ is a compact interval normalized

to [0, 1]. Let B(Θ) denote the Borel σ-algebra of Θ and ∆(Θ) denote the space of

probability measures over (Θ,B(Θ)). Types are distributed according to an absolutely

continuous probability measure µ ∈ ∆(Θ). Each seller knows her own type, but each

buyer ex-ante knows only the type distribution; he observes a seller’s type only upon

meeting her.
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The market is segmented into submarkets, with the segmentation taken as exoge-

nous and common knowledge among the buyers and sellers. Each seller is allocated

to a submarket based on her type, possibly with some randomization. Each buyer, on

the other hand, can freely choose which submarkets to join.

The timing is as follows: Given the market segmentation, each buyer picks a sub-

market to join. Within each submarket, buyers and sellers meet each other according

to a bilateral meeting function, which will be formalized shortly. Upon meeting a

seller, a buyer observes the seller’s type, and the two bargain over the terms of trade.

If they reach a mutual agreement to trade at some price p ∈ R, the buyer and seller

obtain payoffs θ − p and p, respectively. Buyer-seller pairs that fail to trade as well

as buyers and sellers who do not find a trading partner earn a payoff of zero.

2.1. Market segmentation

A submarket is simply a market populated by a subset of seller types. Accordingly,

each submarket can be indexed by the distribution of seller types it contains; that is,

a submarket with seller-type distribution ν ∈ ∆(Θ) is referred to as submarket ν.

A market segmentation is an allocation of sellers to submarkets based on their

types. Formally, let B(∆(Θ)) denote the Borel σ-algebra over ∆(Θ), and let ∆(∆(Θ))

be the space of probability measures over (∆(Θ),B(∆(Θ))). A market segmentation

is defined as a stochastic kernel σ : B(∆(Θ))×Θ → [0, 1] such that,

(a) For each θ ∈ Θ, the mapping B 7→ σ(B, θ) is a probability measure in ∆(∆(Θ));

(b) For each B ∈ B(∆(Θ)), the mapping θ 7→ σ(B, θ) is B(Θ)-measurable.

Under segmentation σ, a type-θ seller is allocated to submarket ν with probability

σ(dν, θ). Consequently, out of the total mass k of sellers, the fraction allocated to

submarket ν is given by

σµ(dν) :=

∫
Θ

σ(dν, θ)µ(dθ),

and the support supp(σµ) represents the submarkets present in the market.

Of course, the market segmentation must ensure that each submarket ν actually

contains seller types distributed according to ν. In particular, σ must satisfy the

following consistency condition: for all A ∈ B(Θ) and B ∈ B(∆(Θ)),∫
A

σ(B, θ)µ(dθ) =

∫
B

ν(A)σµ(dν). (1)
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This identity has a natural interpretation: consider sellers types in some measurable

subset A ⊆ Θ. The fraction of these types allocated to submarkets in B, given by the

left-hand side, must equal the fraction of the same types contained in submarkets in

B, given by the right-hand side.

The consistency condition in (1) guarantees that each submarket ν indeed has

seller-type distribution ν, and that buyers can infer this using Bayes’ rule. Thus,

submarkets serve a dual role for buyers: each one is a platform for meeting a seller,

and it also serves as a signal of the seller types therein. This is especially transparent

when evaluating the consistency condition (1) at B = ∆(Θ), which yields∫
∆(Θ)

νσµ(dν) = µ.

This coincides with the definition of a market segmentation in Bergemann et al.

(2015), and the Bayes-plausibility constraint in Kamenica and Gentzkow (2011).

2.2. Bilateral Meeting functions

Meetings are assumed to be bilateral, so a buyer meets at most one seller and vice

versa. Following the literature on search and matching (Petrongolo and Pissarides,

2001; Rogerson et al., 2005), the likelihood that a buyer and seller meet each other

within a submarket depends only on the submarket tightness, which is the ratio of

buyers to sellers in that submarket.

Formally, a submarket populated by a measure b of buyers and a measure s of

sellers has a submarket tightness of t := b/s ∈ R+ ∪ {∞}. Each seller meets a buyer

with probability m(t) and meets no one with probability 1−m(t), where the mapping

t 7→ m(t) denotes the meeting function. As a measure s ·m(t) of sellers meet buyers

and meetings are bilateral, there must also be a measure s · m(t) of buyers that

meet sellers. Thus, each buyer meets a seller with probability m(t)/t. The following

assumptions on the meeting function are maintained for the remainder of the paper.

Assumption 1. The meeting function satisfies the following:

(a) m(t) ≤ min{1, t} for all t ≥ 0, and

(b) m is twice differentiable, strictly increasing, and strictly concave.
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The first assumption implies that both m(t) and m(t)/t are well-defined proba-

bilities. To motivate the second assumption, notice that as the submarket tightness

increases, the market contains even more buyers relative to sellers, which has two

effects: On the one hand, each seller in the submarket has more opportunities to

meet a buyer, giving rise to a thick market externality on the sellers’ side. This effect

is captured by the monotonicity of the meeting function.7 On the other hand, each

buyer in the submarket faces more competition to meet a seller, giving rise to a con-

gestion externality on the buyers’ side. This effect is captured by the strict concavity

of the meeting function, which guarantees that the mapping t 7→ m(t)/t is strictly

decreasing.

Let α := m(∞) be a seller’s highest probability of meeting a buyer, and let

β := m(0)/0 be a buyer’s highest probability of meeting a seller, with α, β ∈ (0, 1].

In other words, an agent’s probability of meeting a trading partner is highest in an

extremely unbalanced submarket where the agent is on the scarce side. However, even

in such extreme cases, the agent is not guaranteed a meeting if α < 1 (for a seller) or

β < 1 (for a buyer).

Examples of meeting functions that satisfy Assumption 1 include the CES meeting

function

m(t) =
αβt

(αρ + (βt)ρ)1/ρ

with ρ > 0, and the Urn-ball meeting function

m(t) = βt

(
1− exp

(
−α
βt

))
.

While Assumption 1 is common in the search and matching literature, it is admittedly

restrictive. However, by standard continuity arguments, the results of this paper ex-

tend to meeting functions that do not satisfy Assumption 1, provided such functions

can be approximated by meeting functions that do satisfy it. For example, consider

the meeting function m(t) = min{α, βt}, which generalizes the frictionless meeting

function given bym(t) = min{1, t}. This meeting function does not satisfy Point (b) of

7Some earlier work in the matching and search literature uses the term “thick market externality”
to refer to increasing returns to scale in the meeting function, which can give rise to multiple
equilibrium outcomes in search markets (Diamond, 1982b). In contrast, and consistent with much
of the recent literature, I assume constant returns to scale. See Petrongolo and Pissarides (2001)
for a more in-depth survey.
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Assumption 1, as it is only weakly increasing, weakly concave, and non-differentiable

at t = α/β. Nevertheless, the CES meeting function approximates the frictionless one

as ρ → ∞, and thus, the insights of this paper extend to this class of generalized

frictionless meeting functions.

2.3. Trade decisions

I assume that a buyer and seller negotiate the terms of trade only after they meet, and

that their negotiations result in all ex-post efficient trades being realized. Specifically,

suppose a buyer has met a type-θ seller. If they trade, they generate a total surplus

of θ ∈ [0, 1]; If they do not, the surplus is zero. Thus, they mutually agree to trade

at some price p(θ), which requires θ ≥ p(θ) for the buyer to agree and p(θ) ≥ 0 for

the seller to agree. In other words, the price p(θ) is some convex combination of the

surplus θ and the zero outside option.

Furthermore, I assume that buyers capture a non-negligible share of the surplus

from trading with some seller types; otherwise, the buyers would have no incentives

to direct their search to any specific submarket, making the problem at hand trivial.

Formally, I assume:

Assumption 2. There exists a B(Θ)-measurable function λ : Θ → [0, 1] such that

(a) Ex-post efficiency: p(θ) =
(
1− λ(θ)

)
θ for all θ ∈ Θ, and

(b) Non-triviality: µ({θ ∈ Θ : λ(θ) > 0}) > 0.

I refer to λ as the surplus-splitting function, with θ − p(θ) = λ(θ)θ representing the

share of surplus captured by a buyer when he trades with a type-θ seller.

One foundation for p(·) is as the outcome of a Rubinstein bargaining problem:

upon meeting, a buyer and a seller enter a “bargaining phase” in which the pair make

alternating offers on how to divide the surplus. When buyers have a discount factor of

ϱb ∈ (0, 1) and type-θ sellers have a discount factor of ϱθ ∈ (0, 1), the unique solution

to the bargaining phase yields a surplus-splitting function of λ(θ) = (1−ϱθ)/(1−ϱbϱθ)
when buyers make the first proposal, or λ(θ) = (1− ϱb)/(1− ϱbϱθ) when sellers make

the first proposal.

The price p(θ) can also be rationalized as the solution to a generalized Nash-

bargaining problem

max
p∈R

(
θ − p

)λ(θ)
p1−λ(θ),
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with λ(θ) capturing the buyer’s bargaining power when he meets a type-θ seller.

Finally, p(θ) can also reflect the expected price in a setting where a buyer who,

upon meeting a type-θ seller, makes a take-it-or-leave-it offer with probability λ(θ),

while the seller does the same with the complementary probability. If λ(θ) = 1 for all

θ ∈ Θ, the model becomes analogous to one with non-transferable utility because a

buyer can trade with any seller he meets at a price of zero.

3. First-best market segmentation

As a benchmark, consider a planner that seeks to maximize total surplus by choosing

the market segmentation as well as the allocation of buyers across submarkets. A

market segmentation σ determines the allocation of sellers, with kσµ(B) representing

the mass of sellers allocated to submarkets in B ∈ B(∆(Θ)). Let Q ∈ ∆(∆(Θ)) be

the buyer-allocation policy, with Q(B) representing the mass of buyers allocated to

submarkets in B ∈ B(∆(Θ)).

Buyers are allocated only to submarkets that contain sellers, so Q must be abso-

lutely continuous with respect to σµ. In particular, there exists a measurable function

τ : ∆(Θ) → R+ such that Q(dν) = kτ(ν)σµ(dν) for σµ-almost all ν ∈ ∆(Θ). In other

words, the mapping ν 7→ τ(ν) represents the ratio of buyers to sellers within each

submarket and, thus, I refer to it as the submarket tightness function.

The market segmentation and the submarket tightness function together fully

determine the buyer-allocation policy. Hence, given a market segmentation σ, choosing

a buyer-allocation policy Q is equivalent to choosing a submarket tightness function

τ that satisfies the following feasibility constraint:

k

∫
∆(Θ)

τ(ν)σµ(dν) = 1. (2)

Given market segmentation σ and submarket tightness function τ , there is a mea-

sure kσµ(dν)m(τ(ν)) of meetings in submarket ν ∈ supp(σµ), with each meeting gen-

erating an expected surplus of Eν [θ] :=
∫
Θ
θν(dθ). Therefore, the first-best outcome

is the solution to the following surplus-maximization problem:

max
σ,τ

k

∫
∆(Θ)

m(τ(ν))Eν [θ]σµ(dν) s.t. (2). (FB)
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To analyze this surplus-maximization problem, I decompose it into two distinct

optimization steps: First, for each market segmentation, I characterize the surplus-

maximizing submarket tightness function. Second, I determine the optimal market

segmentation. To that end, given market segmentation σ, the surplus-maximizing

submarket tightness function is a solution to

max
τ

k

∫
∆(Θ)

m(τ(ν))Eν [θ]σµ(dν) s.t. (2). (FB-σ)

To characterize the solution to (FB-σ), let the inverse of the mapping t 7→ 1/m′(t)

be denoted by f so that f(y) = t if 1/m′(t) = y. Since m′(t) is continuous and

strictly decreasing in t, f(y) is continuous and strictly increasing in y. Furthermore,

under Assumption 1, limt→0m
′(t) = β and limt→∞m′(t) = 0,8 which implies that

f : [1/β,∞) → R+ with f(1/β) = 0 and limy→∞ f(y) = ∞.

Proposition 1. Fix a market segmentation σ. Let ησ be the unique value of η ∈ (0, β)

that solves

k

∫
∆(Θ)

f

(
Eν [θ]

η

)
· 1[β Eν [θ]>η]σµ(dν) = 1.

Then the submarket tightness function τFB
σ given by

τFB
σ (ν) =


0 if β Eν [θ] ≤ ησ

f

(
Eν [θ]

ησ

)
if β Eν [θ] > ησ

solves (FB-σ). Furthermore, any other submarket tightness function τ that solves

(FB-σ) satisfies τ = τFB for σµ-almost everywhere.

From a social welfare perspective, thicker submarkets are desirable because they

facilitate more meetings, and ultimately, more trade. However, with a finite measure

of buyers, increasing the thickness of one submarket necessarily reduces the thickness

of others. This trade-off produces two key implications for the first-best allocation of

buyers across submarkets.

8Since m is strictly concave and m(0) = 0 ( Assumption 1), m′(t) < m(t)/t for all t > 0. Taking
limits on both sides as t → 0, we have m′(0) ≤ β. Similarly, given t > 0, we have m′(t) >
(m(t′)−m(t))/(t′ − t) for all t′ > t. Taking double limits on both side, first as t → 0 and then as
t′ → 0, yields that m′(0) ≥ β.
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First, some submarkets may be inactive—no buyers are allocated to them. Specif-

ically, given a market segmentation σ, submarkets generating an expected surplus

lower than ησ/β are inactive, while those generating a strictly larger expected sur-

plus are active. In other words, the planner focuses the limited number of buyers on

submarkets with a “high-enough” expected surplus.

Second, the marginal value of an additional buyer in any one of the active sub-

markets must be equal. As the meeting function is concave, this condition requires

that an active submarket’s tightness to be strictly increasing in its expected surplus.

Furthermore, the marginal value of an additional buyer in any active submarket must

exceed that in any inactive submarket. Otherwise, reallocating some buyers from an

active to an inactive submarket would increase total surplus. Under this interpreta-

tion, any submarket with an expected surplus equal to ησ/β is a marginal submarket

that leaves the planner indifferent between keeping it inactive or allocating buyers to

it.

Let us now address the task of characterizing the first-best market segmentation:

what market segmentation, along with the corresponding surplus-maximizing sub-

market tightness function, should the planner choose? In other words, the first-best

market segmentation is the solution to the following:

max
σ

k

∫
∆(Θ)

m(τFB
σ (ν))Eν [θ]σµ(dν).

To characterize the first-best market segmentation, I begin by defining the no-

tion of a perfect market segmentation, which allocates each seller type to a distinct

submarket. Formally, for each θ ∈ Θ, let δθ ∈ ∆(Θ) denote the Dirac measure at θ,

so that for any A ∈ B(Θ), δθ(A) = 1[θ∈A]. The perfect market segmentation is then

defined by the stochastic kernel σPS such that, for all B ∈ B(∆(Θ)) and θ ∈ Θ,

σPS(B, θ) = 1[δθ∈B].

Proposition 2. The perfect segmentation σPS is a first-best market segmentation.

Intuitively, by choosing a market segmentation σ and a corresponding submarket

tightness function τFB
σ , the planner is effectively allocating

kµ(dθ)

∫
∆(Θ)

m(τFB
σ (ν))σ(dν, θ)
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meetings to type-θ sellers. The concavity in the meeting function then implies that,

for each seller type, concentrating buyers into a single thick submarket minimizes the

mass of buyers needed to attain a desired volume of meetings. Consequently, perfect

segmentation emerges as a first-best market segmentation.

Nevertheless, perfect segmentation is not the only first-best market segmentation.

For instance, under perfect segmentation, we know from Proposition 1 that the sub-

market for any seller type below ησPS/β is inactive, while the submarket for any seller

type strictly above ησPS/β is active. Thus, a lower censorship market segmentation,

which pools all seller types θ ≤ ησPS/β into a single submarket and maintains a per-

fect segmentation for all types θ > ησPS/β, would also constitute a first-best market

segmentation.

4. Search Equilibrium

Let us now consider a search market in which each buyer strategically chooses which

submarkets to enter. What is the equilibrium outcome of such a decentralized search

environment?

To address this, consider an arbitrary market segmentation σ, and suppose buyers

anticipate a submarket tightness function τ : ∆(Θ) → R+. Given (σ, τ), a buyer who

joins submarket ν ∈ supp(σµ) expects to meet a seller with probability m(τ(ν))/τ(ν).

If the buyer meets a type-θ seller within the submarket (with θ ∈ supp(ν)), he further

expects to earn a payoff λ(θ)θ from trade. Therefore, the buyer’s expected payoff from

joining submarket ν is given by

U(ν; τ) :=
m
(
τ(ν)

)
τ(ν)

∫
Θ

λ(θ)θν(dθ)︸ ︷︷ ︸
:=Eν [λ(θ)θ]

.

Definition 1. A search equilibrium of a market segmentation σ is given by a sub-

market tightness function τ : ∆(Θ) → R+ and a reservation value u ∈ R such that

(a) τ satisfies the feasibility constraint (2), and

(b) (τ, u) jointly satisfy

U(ν; τ) ≤ u (3)

for σµ-almost all ν with equality if τ(ν) > 0.
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In essence, buyers form expectations about submarket tightness τ and their reser-

vation value u, which represents the average payoff they expect to earn from partic-

ipating in the search market. In equilibrium, these expectations must be consistent

with a feasible allocation of buyers across submarkets, as captured by (2), as well

as with an optimal buyers’ search strategy, as captured by (3). Intuitively, the latter

condition states that submarkets that yield a payoff lower than u remain inactive,

while those offering payoffs at least as large as u are active. Furthermore, among ac-

tive submarkets, buyers must be indifferent between any two; otherwise, they would

all gravitate toward the submarket offering the higher expected payoff.

Finally, a search equilibrium (τ, u) must satisfy a rational expectations condition:

the anticipated reservation value u should be consistent with the buyers’ actual ex-

ante payoff. To see this, observe that a pair (τ, u) that satisfies Definition 1 implies

that m(τ(ν))Eν [λ(θ)θ] = u τ(ν) for σµ-almost all ν from (3). Integrating over all

submarkets then yields∫
∆(Θ)

m(τ(ν))Eν [λ(θ)θ]σµ(dν) = u

∫
∆(Θ)

τ(ν)σµ(dν)

=
u

k
,

where the last equality follows from (2). On the other hand, buyers’ ex-ante payoff

from an allocation policy Q ∈ ∆(∆(Θ)) with dQ/dσµ = k · τ is given by9∫
∆(Θ)

U(ν; τ)Q(dν) = k

∫
∆(Θ)

m(τ(ν))Eν [λ(θ)θ]σµ(dν).

Putting these two expressions together then yields the desired rational expectations

condition:

u = k

∫
∆(Θ)

m(τ(ν))Eν [λ(θ)θ]σµ(dν), (4)

that is, the buyers’ reservation value is equal to the share of the ex-ante surplus they

capture in equilibrium.

To characterize the equilibrium, let the inverse of the mapping t 7→ t/m(t) be

9Recall that given segmentation σ, submarket ν ∈ supp(σµ) has a measure k · σµ(dν) sellers. Hence,
if the submarket has tightness τ(dν), then it must have a measure Q(dν) of buyers, where Q(dν) =
k · τ(dν) · σµ(dν).
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denoted by g so that g(y) = t if t/m(t) = y. Since m(t)/t is continuous and strictly

decreasing in t, g(y) is continuous and strictly increasing in y. Furthermore,m(0)/0 =

β and limt→∞m(t)/t = 0, which implies that g : [1/β,∞) → R+ with g(1/β) = 0 and

limy→∞ g(y) = ∞.

Proposition 3. Fix a market segmentation σ. There exists a search equilibrium

(τ ∗σ , u
∗
σ) such that 0 < u∗σ < β supθ∈Θ λ(θ)θ, and

τ ∗σ(ν) =


0 if β Eν [λ(θ)θ] ≤ u∗σ

g

(
Eν [λ(θ)θ]

u∗σ

)
if β Eν [λ(θ)θ] > u∗σ

.

Furthermore, the equilibrium is essentially unique: any other search equilibrium (τ, u)

satisfies τ = τ ∗σ for σµ-almost everywhere, and u = u∗σ.

To build intuition, consider a fixed reservation value u. When buyers anticipate a

payoff of u, they optimally avoid entering any submarket ν satisfying β ·Eν [λ(θ)θ] ≤ u,

even if these submarkets offer the highest probability of meeting a seller. This is be-

cause the expected payoff from trade in such submarkets is too low to justify partic-

ipation. Among the remaining submarkets, those offering a higher payoff conditional

on trade attract more buyers, leading to greater congestion. As a result, congestion in

each active submarket precisely offsets its potential gains from trade. Consequently,

the optimal submarket tightness for a given reservation value u is determined by the

mapping

ν 7→ g

(
Eν [λ(θ)θ]

u

)
1[β Eν [λ(θ)θ]>u].

Moreover, a buyer’s average payoff across all active submarkets is given by∫
∆(Θ)

m

(
g

(
Eν [λ(θ)θ]

u

))
1[β Eν [λ(θ)θ]>u]Eν [λ(θ)θ]σµ(dν),

which is strictly decreasing in u. In other words, when all buyers anticipate a higher

reservation value, fewer submarkets remain active, increasing congestion within those

submarkets. This, in turn, lowers the probability that any given buyer meets a seller,

thereby reducing their average payoff. Of course, in equilibrium, the reservation value

u∗σ is not arbitrary; rather, it is determined by the rational expectations condition,
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captured in (4), which requires it to equal the buyer’s average payoff across all active

submarkets.

A comparison of the socially efficient allocation of buyers across submarkets (Propo-

sition 1) to the equilibrium allocation (Proposition 3) highlights two main sources of

inefficiency. First, a social planner’s preference over seller types is strictly monotonic,

as a higher type generates a larger surplus. In contrast, a buyer’s valuation of seller

types depends on the share of surplus they capture, which may be non-monotonic in

seller types depending on the surplus-splitting function. For example, if λ(θ) = 1− θ,

buyers prefer to meet intermediate-type sellers over low- and high-type sellers. This

divergence in preferences over seller types can lead to a misalignment in how the

planner and buyers evaluate submarkets. Consequently, the set of active submarkets

in a search equilibrium may differ from that of the socially efficient allocation.

Second, even when the planner’s and buyers’ preferences over seller types align,

the allocation of buyers across these submarkets may differ. In equilibrium, buyers

allocate themselves to equalize their expected payoffs across active submarkets. In

contrast, the planner allocates buyers to equalize the marginal value of an additional

meeting across active submarkets. The equilibrium allocation is driven by the level

of congestion in a submarket, m(t)/t, while the planner’s allocation is driven by the

thick market externality, m′(t). From Assumption 1, m(t)/t ≥ m′(t) for all t ≥ 0,

implying that, even when a submarket is active under both the socially efficient and

equilibrium allocations, too many buyers join the submarket in equilibrium, resulting

in inefficiently high levels of congestion.

5. Efficiency of Search Equilibrium

5.1. Hosios condition

Despite the potential inefficiencies in the equilibrium allocation of buyers, this section

identifies necessary and sufficient conditions under which the first-best outcome, as

established in Proposition 1 and Proposition 2, can be decentralized. To state the

result, let

ε(t) :=
m′(t)

m(t)
t

denote the elasticity of the meeting function for t ≥ 0.
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Proposition 4. Suppose the surplus-splitting function λ : Θ → [0, 1] is continuous.

The pair (σPS, τ ∗σPS) solves (FB) if and only if for all θ ≤ ησPS/β,

λ(θ)θ ≤ λ

(
ησPS

β

)
ησPS

β
,

and for all θ > ησPS/β

λ(θ) = λ

(
ησPS

β

)
ε

(
f

(
θ

ησPS

))
.

The proposition relates the efficiency of decentralized search to the elasticity of the

meeting function and the buyers’ bargaining power, giving rise to a Hosios condition

(Hosios, 1990). Intuitively, the condition ensures that the surplus captured by a buyer

within any inactive submarket is no greater than what he could capture from join-

ing the submarket of a type-ησPS/β seller (the marginal submarket in the first-best

outcome). Moreover, a buyer’s expected payoff from joining any active submarket is

exactly balanced against the marginal value of an additional buyer in that submarket.

This balance implies that buyers internalize the congestion and thick market exter-

nalities they create when choosing a submarket, aligning their private incentives with

the social planner’s objectives and leading to an efficient outcome.

An instructive special case that satisfies both conditions of Proposition 4 is when

λ(θ) = 0 for all θ ∈ Θ. In this case, buyers would be completely indifferent across all

submarkets since they capture no surplus, eliminating any tension between private

and social incentives. Clearly, efficiency is straightforward to attain in equilibrium

under these conditions. However, this trivial case is ruled out by Assumption 2, which

ensures that buyers capture a strictly positive share of surplus.

5.2. Constrained-efficient market segmentation

A key takeaway from Proposition 4 is the restrictive nature of the Hosios condition.

Achieving efficiency in a decentralized search equilibrium often requires a knife-edge

condition that rarely holds in many familiar settings. For instance, inefficiency per-

sists when the surplus-splitting function is constant and positive, which is a natural

assumption if seller types determine surplus without directly affecting bargaining

power. This rarity of efficiency in equilibrium raises an important question: what is
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the constrained-efficient segmentation of a search market? That is, how should the so-

cial planner optimally segment the market when it can no longer directly control the

allocation of buyers across submarkets but can still influence their choices indirectly

through the information they observe prior to selecting a submarket?

Formally, each market segmentation σ induces an essentially-unique search equi-

librium (τ ∗σ , u
∗
σ), as characterized by Proposition 3. A planner who implements a seg-

mentation σ expects to create a measure kσµ(dν)m(τ ∗σ(ν)) of meetings in submarket

ν ∈ supp(σµ), with each meeting generating an expected surplus of Eν [θ]. Thus, the

constrained-efficient market segmentation is the solution to the planner’s second-best

problem:

max
σ

k

∫
∆(Θ)

m(τ ∗σ(ν))Eν [θ]σµ(dν). (SB)

This optimization problem is inherently complex: it involves optimizing over an

infinite-dimensional choice variable that enters the objective function in a highly non-

linear way. Specifically, the choice of segmentation influences buyers’ beliefs about

seller types within each submarket, which in turn affects how buyers allocate them-

selves across submarkets.10 In Appendix A.2, I derive a sufficient and necessary con-

dition that decouples these two interdependent effects. However, even this requires

solving a constrained concavification problem (Kamenica and Gentzkow, 2011) with

a continuum of states. As such, a general characterization of the constrained-efficient

market segmentation appears intractable in many cases.

To make further progress, I introduce the following additional assumption:

Assumption 3. For all θ ∈ Θ, λ(θ) = ℓ for some ℓ ∈ (0, 1].

Under this assumption, buyers capture a fixed share ℓ of surplus generated in any

submarket. Hence, maximizing total surplus is now equivalent to maximizing buyers’

welfare. Moreover, Assumption 3 implies that, in equilibrium, any two submarkets

with identical posterior means have the same submarket tightness and generate the

same surplus, i.e., for ν, ν ′ ∈ supp(σµ) with Eν [θ] = Eν′ [θ], we have τ ∗σ(ν) = τ ∗σ(ν
′),

and m(τ ∗σ(ν))Eν [θ] = m(τ ∗σ(ν
′))Eν′ [θ]. This property allows us to reformulate (SB)

as an optimization problem over posterior-mean distributions with a majorization

constraint.
10Although (SB) resembles an information design problem, it differs in a crucial way: whereas a
receiver’s optimal action in standard information design depends solely on the realized posterior
beliefs, buyers’ search strategies here depend both on the entire distribution of posterior beliefs.

21



To that end, let F denote the cumulative distribution function (CDF) associated

with the prior µ ∈ ∆(Θ). Importantly, F is also the posterior-mean distribution

induced by the perfect market segmentation.11 More generally, a CDF H : Θ → [0, 1]

represents a posterior-mean distribution induced by some market segmentation if

and only if H is a mean-preserving contraction of F (Blackwell, 1953; Blackwell and

Girshick, 1954). Let MPC(F ) denote the set of all such mean-preserving contractions.

For each H ∈ MPC(F ), there exists some market segmentation σ that induces H

as its posterior-mean distribution, and yields an essentially-unique search equilibrium

(τ ∗σ , u
∗
σ). With some abuse of language, I refer to H as the market segmentation, and

denote the search equilibrium as (τ ∗H , u
∗
H) where τ

∗
H(Eν [θ]) := τ ∗σ(ν) and u

∗
H := u∗σ.

12

The planner’s second-best problem (SB) can now be reformulated as follows:

max
H∈MPC(F )

k

∫
Θ

m(τ ∗H(x))xdH(x). (SB′)

While this optimization problem remains non-linear, the next result provides a tractable

characterization of a constrained-efficient market segmentation.

Proposition 5. A segmentation H ∈ MPC(F ) is constrained-efficient if and only if

H ∈ argmax
Ĥ∈MPC(F )

k

∫
Θ

τ ∗H(x)dĤ(x). (5)

Furthermore,

(i) If t 7→ t/m(t) is concave, then F is a constrained-efficient segmentation.

(ii) If t 7→ t/m(t) is convex, then there exists a cutoff θc ∈ Θ, and posterior means

x := EF [θ|θ ≤ θc] and x̄ := EF [θ|θ ≥ θc] such that

H(x) =


0 if x < x

F (θc) if x ∈ [x, x̄)

1 if x ≥ x̄

is a constrained-efficient segmentation. In this case, τ ∗H(x) = 0 < τ ∗H(x̄).
11Formally, F (x) := σPS

µ

(
{ν ∈ ∆(Θ) : Eν [θ] ≤ x}

)
for all x ∈ Θ.

12Note that the submarket tightness function is now defined over Θ, i.e., τ∗H : Θ → R+ maps a
posterior mean x ∈ Θ to submarket tightness τ∗H(x).
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The above characterization has two implications for the constrained-efficient seg-

mentation problem. First, it simplifies the non-linear optimization problem in (SB′)

by decomposing it into a linear programming problem and a fixed point problem in-

volving the feasibility constraint. The linear programming problem can be addressed

by applying tools from the information design literature (Dworczak and Martini, 2019;

Kleiner et al., 2021; Kolotilin et al., 2022; Arieli et al., 2023). Specifically, the optimal

segmentation can be characterized by a monotone partition, where the type space

is divided into a countable number of connected intervals. Within each interval, the

planner allocates each seller type to her own distinct submarket (perfect revelation);

or allocates all seller types to same submarket (pooling); or randomly allocates all

seller types to one of two submarkets (bi-pooling).

Second, under additional assumptions on t/m(t), which represents the buyers’

odds of meeting a seller (a 1-in-t/m(t) chance), the constrained-efficient market seg-

mentation takes one of two forms: perfect or binary market segmentation. To build

intuition, recall that efficiency requires allocating more meetings to higher types.

While the planner cannot directly control the number of meetings each seller type re-

ceives, it can indirectly influence how buyers distribute themselves across submarkets

through the market segmentation. In particular, the planner can separate higher and

lower seller types into distinct submarkets, which induces more buyers to self-select

into the submarket for higher seller types, thereby increasing the number of meetings

for those sellers

However, this strategy comes with trade-offs. While separating seller types ensures

high-type sellers receive more meetings, the concavity of the meeting function implies

a reduction in the total number of meetings in the search market. For this segmen-

tation to enhance welfare, the surplus gained from increasing meetings for high-type

sellers must outweigh the loss of surplus stemming from a lower number of overall

meetings.

Proposition 5 demonstrates that such segmentation is welfare-improving when

t/m(t) is concave. Intuitively, as t increases, a buyer’s odds of meeting a seller

worsen, reflecting the congestion externality buyers face in tighter markets. When

t/m(t) is concave, this congestion externality worsens gradually as market tightness

increases. Consequently, separating high and low seller types into distinct submar-

kets encourages many buyers to allocate themselves to the submarket for high-type

sellers, mitigating the loss in welfare from a decrease in the total number of meet-
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ings. Consequently, perfect segmentation emerges as constrained-efficient. Conversely,

when t/m(t) is convex, the congestion externality worsens more rapidly with increased

submarket tightness, making such segmentation less attractive for the planner.

Let us conclude by noting that many meeting functions widely used in the search

and matching literature satisfy the concavity or convexity conditions identified in

Proposition 5. For example, the mapping t 7→ t/m(t) is concave for CES meet-

ing functions with parameter values ρ ≤ 1, leading to perfect segmentation as the

constrained-efficient outcome. In this case, buyers leverage granular ex-ante informa-

tion about seller types to guide their choice of submarkets, thereby endogenously

creating a directed search market where buyers learn a seller’s type before meeting

her.

In contrast, for Urn-ball meeting functions and for CES meeting functions with

parameter values ρ ≥ 1, the mapping t 7→ t/m(t) is convex. Similarly, while the

generalized frictionless meeting function with m(t) = min{α, βt} does not satisfy all

the conditions of Assumption 1, it inherits the properties of a CES meeting function,

which approximates the frictionless meeting function as ρ → ∞. As a result, the

constrained-efficient segmentation in all three cases is a binary segmentation. In these

cases, buyers have minimal ex-ante information they can use to direct their search.

Instead, a random search market emerges, with buyers learning a seller’s type only

after meeting her.
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A. Appendix

A.1. Proofs

Proof of Proposition 1. Let us fix a market segmentation σ. Let L1(∆(Θ), σµ) be

the space of σµ-integrable functions from ∆(Θ) to R. Consider the following relaxed

problem:

max
τ∈L1(∆(Θ),σµ)

τ≥0

k

∫
∆(Θ)

m(τ(ν))Eν [θ]σµ(dν)

s.t. k

∫
∆(Θ)

τ(ν)σµ(dν) ≤ 1.

Notice that the constraint in the relaxed problem must bind at the optimum since

m(t) is a strictly increasing function. Hence, any solution to the relaxed problem is

also a solution to (FB-σ).

Notice that both the objective and the constraint in the relaxed problem are

concave functionals. Thus, from Luenberger (1997) (Section 8.3, Theorem 1; Section

8.4, Theorem 2), τFB
σ is a solution to (FB-σ) if and only if there exists a Lagrange

multiplier ησ > 0 such that τFB
σ solves:

max
τ∈L1(∆(Θ),σµ)

L(τ, ησ) := k

∫
∆(Θ)

[
m(τ(ν))Eν [θ]− ηστ(ν)

]
σµ(dν) + ησ.

We can maximize the Lagrangian by pointwise maximizing the integrand, which

depends on σ only indirectly through ησ. Hence, we can first pointwise maximize

L(τ, η) for an arbitrary η > 0, and then find the value ησ that makes the constraint

in (FB-σ) bind.

To that end, given η > 0, let us find a function ψ : ∆(Θ)× (0,∞) → R+ such that

m′(ψ(ν, η))Eν [θ] ≤ η for all ν ∈ supp(σµ) with equality if ψ(ν, η) > 0. These first-

order conditions are also sufficient as m(t)Eν [θ]− ηt is concave in t for all ν ∈ ∆(Θ).

Recall that m′(t) is strictly decreasing in t with m′(0) = β. Thus, set ψ(ν, η) = 0 for

all ν ∈ supp(σµ) with β Eν [θ] ≤ η. Furthermore, for all ν ∈ supp(σµ) with β Eν [θ] > η,

set m′(ψ(ν, η))Eν [θ] = η. As a result, recalling the definition of f : [1/β,∞) → R+,
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we have

ψ(ν, η) :=


0 if β Eν [θ] ≤ η

f

(
Eν [θ]

η

)
if β Eν [θ] > η

.

Since f is a continuous and strictly increasing function with limy→∞ f(y) = ∞
and f(1/β) = 0, we have:

(i) the mapping (ν, η) 7→ ψ(ν, η) is continuous in both arguments,

(ii) for each η > 0, ψ(ν, η) ≥ ψ(ν ′, η) whenever Eν [θ] ≥ Eν′ [θ],

(iii) for each ν ∈ supp(σµ), ψ(ν, η) ≤ ψ(ν, η′) whenever η > η′ > 0, and

(iv) for σµ-almost all ν, limη→0 ψ(ν, η) = ∞, and ψ(ν, η) = 0 for all η ≥ β.

Consequently, ψ(ν, η) ≤ ψ(δ1, η) < ∞ for all ν ∈ supp(σµ) and all η > 0, which in

turn implies ψ(·, η) ∈ L1(∆(Θ), σµ) for all η > 0.

Next, let us show that there exists a unique multiplier ησ ∈ (0, β) such that ησ

along with ψ(·, ησ) lead to a binding feasibility constraint in (FB-σ). To that end,

define Ψ : (0,∞) → R+ to be the mapping given by

Ψ(η) := k

∫
∆(Θ)

ψ(ν, η)σµ(dν).

Clearly, the feasibility constraint in (FB-σ) binds at ησ if Ψ(ησ) = 1.

Observe that Ψ is a continuous and weakly decreasing function because ψ(ν, η) is

continuous and weakly decreasing in η for each ν ∈ supp(σµ). Moreover, Ψ(η) = 0 for

all η ≥ β, and from the monotone convergence theorem,

lim
η→0

Ψ(η) = k

∫
∆(Θ)

lim
η→0

ψ(ν, η)σµ(dν) = ∞.

Thus, there exists a unique ησ ∈ (0, β) such that Ψ(ησ) = 1. The optimal submarket

tightness is defined by τFB
σ := ψ(·, ησ). Furthermore, any τ that solves (FB-σ) must

have τ = τFB
σ for σµ-almost everywhere. In other words, the optimal submarket

tightness for a given segmentation σ is unique up to the σµ-null sets.
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Proof of Proposition 2. Fix any market segmentation σ, and let τFB
σ be the solution

to (FB-σ). The proof proceeds by showing that, given the pair (σ, τFB
σ ), there exists

another pair (σPS, τ̃) that achieves a (weakly) higher surplus for each type-θ seller.

To that end, define a new submarket tightness function τ̃ : ∆(Θ) → R+ given by

τ̃(ν) =


∫
∆(Θ)

τFB
σ (ν ′)σ(dν ′, θ) if ν = δθ

τFB
σ (ν) otherwise

,

and notice that∫
∆(Θ)

τ̃(ν)σPS
µ (dν) =

∫
Θ

τ̃(δθ)µ(dθ) =

∫
∆(Θ)

τFB
σ (ν)σµ(dν),

where the first equality follows from the definition of σPS and the second equality

follows by construction of τ̃ . Therefore, τ̃ ∈ L1(∆(Θ), σPS
µ ) and the pair (σPS, τ̃)

satisfies (2).

Comparing the expected surplus generated from a type-θ seller under (σ, τFB
σ ) to

that under (σPS, τ̃), we have

k · θ
∫
∆(Θ)

m(τFB
σ (ν))σ(dν, θ) ≤ k · θ ·m

(∫
∆(Θ)

τFB
σ (ν)σ(dν, θ)

)
= k · θ ·m(τ̃(δθ))

= k · θ
∫
∆(Θ)

m(τ̃(ν))σPS(dν, θ),

where the inequality follows from the concavity of m, the first equality follows by

definition of τ̃ , and the last follows by the definition of σPS.

Thus, for any arbitrary market segmentation σ, the pair (σ, τFB
σ ) generates a

(weakly) lower expected surplus than the pair (σPS, τ̃). Of course, (σPS, τ̃) generates

a (weakly) lower expected surplus than the pair (σPS, τFB
σPS), because the latter solves

(FB-σ) when σ = σPS. As a result, the pair (σPS, τFB
σPS) is a solution to (FB).

Proof of Proposition 3. Let us first establish a sufficient and necessary condition for

a submarket to be active. We shall then use this result to show that an essentially-

unique equilibrium exists for any given market segmentation.
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Lemma 1. Suppose (τ ∗σ , u
∗
σ) is a search equilibrium for a market segmentation σ. For

σµ-almost all ν, τ ∗σ(ν) > 0 if and only if β Eν [λ(θ)θ] > u∗σ.

Proof of Lemma 1.

(Only-if direction): Suppose submarket ν ∈ supp(σµ) is active, i.e., τ ∗σ(ν) > 0,

which implies

u∗σ =
m(τ ∗σ(ν))

τ ∗σ(ν)
Eν [λ(θ)θ] < β Eν [λ(θ)θ],

where the equality follows from (3), and the inequality follows from the fact β is the

highest probability with which a buyer meets a seller.

(If direction): Suppose submarket ν ∈ supp(σµ) is inactive, i.e., τ
∗
σ(ν) = 0, which

implies

u∗σ ≥ m(0)

0
Eν [λ(θ)θ] = β Eν [λ(θ)θ],

where the inequality follows from (3), and the equality follows by definition that

m(0)/0 = β. Thus, from the contrapositive, β Eν [λ(θ)θ] > u∗σ implies τ ∗σ(ν) > 0.

Let us now turn to proving the existence of an essentially-unique equilibrium. By

Lemma 1, any search equilibrium (τ ∗σ , u
∗
σ) satisfies τ

∗
σ(ν) = 0 for σµ-almost all ν such

that β Eν [λ(θ)θ] ≤ u∗σ, and τ
∗
σ(ν) > 0 for σµ-almost all ν such that β Eν [λ(θ)θ] > u∗σ.

In the latter case, (3) implies that

τ ∗σ(ν)

m(τ ∗σ(ν))
=

Eν [λ(θ)θ]

u∗σ
,

which from the definition of g implies that τ ∗σ(ν) = g (Eν [λ(θ)θ]/u
∗
σ). In other words,

there exists a mapping ϕ : ∆(Θ)× (0,∞) → R+ given by

ϕ(ν, u) :=


0 if β Eν [λ(θ)θ] ≤ u

g

(
Eν [λ(θ)θ]

u

)
if β Eν [λ(θ)θ] > u

such that τ ∗σ = ϕ(·, u∗σ) for σµ-almost everywhere.

Since g is a continuous and strictly increasing function with limy→∞ g(y) = ∞
and g(1/β) = 0, we have:

(i) the mapping (ν, u) 7→ ϕ(ν, u) is continuous in both arguments,
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(ii) for each u > 0, ϕ(ν, u) ≥ ψ(ν ′, u) whenever Eν [λ(θ)θ] ≥ Eν′ [λ(θ)θ], and

(iii) for each ν ∈ supp(σµ), ϕ(ν, u) ≤ ϕ(ν, u′) whenever u > u′ > 0, and

(iv) for σµ-almost all ν, limu→0 ϕ(ν, u) = ∞, and ψ(ν, u) = 0 for all u ≥ β supθ∈Θ λ(θ)θ.

Consequently, ϕ(ν, u) ≤ supν′∈∆(Θ) ϕ(ν
′, u) ≤ g(1/u) <∞ for all ν ∈ supp(σµ), which

in turn implies ϕ(·, u) ∈ L1(∆(Θ), σµ) for all u > 0.

Next, observe that a pair (τ ∗σ , u
∗
σ) jointly satisfies (3) and (4) if and only if u∗σ is a

fixed point of the function Φ : (0,∞) → R+ given by

Φ(u) := k

∫
∆(Θ)

m(ϕ(ν, u))Eν [λ(θ)θ]σµ(dν).

The function Φ(u) is a continuous and weakly decreasing function because ϕ(ν, u) is

continuous and weakly decreasing in u for each ν ∈ supp(σµ). Moreover, Φ(u) = 0 for

all u ≥ β supθ∈Θ λ(θ)θ, and

lim
u→0

Φ(u) = k

∫
∆(Θ)

lim
u→0

m(ϕ(ν, u))Eν [λ(θ)θ]σµ(dν)

= αkEµ

[
λ(θ)θ

]
> 0,

where the first equality follows from the dominated convergence theorem, the second

equality follows because limu→0 ϕ(ν, u) = ∞ for all ν such that Eν [λ(θ)θ)] > 0, and

because limt→∞m(t) = α, and the inequality follows from Assumption 2.

Thus far, we have shown that Φ(u) is a continuous and (weakly) decreasing func-

tion with limu→β supθ∈Θ λ(θ)θ Φ(u) = 0 < limu→0Φ(u). Therefore, it has a unique fixed

point in the interval (0, β supθ∈Θ λ(θ)θ). We have thus established the existence of

an essentially-unique pair (τ ∗σ , u
∗
σ) with u∗σ = Φ(u∗σ) and τ ∗σ(·) = ϕ(·, u∗σ), such that

(τ ∗σ , u
∗
σ) jointly satisfies (3) and (4). In other words, there exists an essentially-unique

search equilibrium (τ ∗σ , u
∗
σ) for each market segmentation σ.

Proof of Proposition 4. (Only-if direction): Suppose the pair (σPS, τ ∗σPS) solves (FB).

By Proposition 1, τ ∗σPS = τFB
σPS for σPS

µ -almost everywhere, or equivalently, τ ∗σPS(δθ) =

τFB
σPS(δθ) for µ-almost all θ.
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From Proposition 1, τFB
σPS(δθ) = 0 for all θ ≤ ησPS/β, and τFB

σPS(δθ) > 0 for all

θ > ησPS/β. Similarly, from Proposition 3, τ ∗σPS(δθ) = 0 for all θ such that λ(θ)θ ≤
u∗σPS/β, and τ

∗
σPS(δθ) > 0 for all θ such that λ(θ)θ > u∗σPS/β. Since the set of active and

inactive submarkets coincide almost everywhere under the two submarket tightness

functions, we have that θ ≤ ησPS/β if and only if λ(θ)θ ≤ u∗σPS/β. By the continuity

of the surplus-splitting function, we can conclude that

u∗σPS = λ

(
ησPS

β

)
ησPS .

Thus, for all θ ≤ ησPS/β,

λ(θ)θ ≤ λ

(
ησPS

β

)
ησPS

β
.

Moreover, for all θ > ησPS/β, Proposition 1 implies that

m′(τFB
σPS(δθ))θ = ησPS ,

while Proposition 3 implies that

m(τ ∗σPS(δθ))

τ ∗
σPS(δθ)

λ(θ)θ = λ

(
ησPS

β

)
ησPS .

Combining the above two expressions and noting that τFB
σPS = τ ∗σPS almost everywhere

yields

λ(θ) = λ

(
ησPS

β

)
· ε
(
f

(
θ

ησPS

))
for all θ > ησPS/β.

(If direction): Suppose the surplus-splitting function, λ, satisfies the properties

given in the proposition. We first show that (τFB
σPS , λ(ησPS/β) · ησPS) is a search equi-

librium of σPS.

To that end, for θ ≤ ησPS/β, we have

U(δθ; τ
FB
σPS , σ

PS) =
m(0)

0︸ ︷︷ ︸
=β

λ(θ)θ ≤ λ

(
ησPS

β

)
ησPS ,

where the equality follows from the fact that τFB
σPS(δθ) = 0 for θ ≤ ησPS/β (Proposi-
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tion 1), and the inequality follows by the assumption on λ given in the proposition.

For θ > ησPS/β, we have

U(δθ; τ
FB
σPS , σ

PS) =
m
(
f
(

θ
η
σPS

))
f
(

θ
η
σPS

) λ(θ)θ

= m′
(
f

(
θ

ησPS

))
λ

(
ησPS

β

)
θ

= λ

(
ησPS

β

)
ησPS ,

where the first equality follows from the characterization of τFB
σPS(δθ) for θ > ησPS/β

(Proposition 1), the second equality follows by the assumption on λ given in the

proposition, and the last equality follows from the fact that f is the inverse of the

mapping t 7→ 1/m′(t). Therefore, the pair (τFB
σPS , λ(ησPS)ησPS) satisfies (3) of Defini-

tion 1.

Additionally,

k

∫
∆(Θ)

m
(
τFB
σPS(δθ)

)
Eν [λ(θ)θ]σ

PS
µ (dν) =k

∫ 1

η
σPS /β

m

(
f

(
θ

ησPS

))
λ(θ)θµ(dθ)

=λ

(
ησPS

β

)
ησPS · k

∫ 1

η
σPS /β

f
(ησPS

θ

)
µ(dθ)

=λ

(
ησPS

β

)
ησPS ,

where the first equality follows from the definition of σPS and the characterization of

τFB
σPS in Proposition 1, the second equality follows by the assumption on λ given in

Proposition 4 and the fact that f is the inverse of the mapping t 7→ 1/m′(t), and the

last equality follows by the construction of ησPS as given in Proposition 1. Thus, the

pair (τFB
σPS , λ(ησPS/β) · ησPS) also satisfies (4) of Definition 1.

We can therefore conclude that (τFB
σPS , λ(ησPS/β) · ησPS) is a search equilibrium of

σPS. However, (τ ∗σPS , u
∗
σPS) is the essentially-unique search equilibrium of σPS. Thus,

τ ∗σPS = τFB
σPS for σPS

µ -almost everywhere, and u∗σPS = λ(ησPS/β)·ησPS . Since (σPS, τFB
σPS)

solves (FB), the almost-everywhere equivalence between τ ∗σPS and τFB
σPS implies that
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(σPS, τ ∗σPS) also solves (FB), giving us the desired result.

Proof of Proposition 5. Let us first establish some facts that will be useful in the

proof: Under Assumption 3, β supθ∈Θ λ(θ)θ = βℓ. With some abuse of notation, for

x ∈ Θ and u > 0, let

ϕ(x, u) :=


0 if βℓx ≤ u

g

(
ℓx

u

)
if βℓx > u

which is simply a reformulation of the function ϕ(ν, u) as defined in the proof of

Proposition 3 into the current environment where payoffs depend only on the posterior

mean.

Given u > 0, consider the following linear program:

max
Ĥ∈MPC(F )

k

∫
Θ

ϕ(x, u)dĤ(x). (LP-u)

Let V (u) be the value function corresponding to (LP-u), and let H(u) be the set of

maximizers. Since the objective is a continuous function and MPC(F ) is compact,

V (u) is continuous in u, and H(u) is non-empty and compact-valued for each u > 0.

Importantly, by construction, H satisfies (5) if and only if H ∈ H(u∗H).

Observe that V is a (weakly) decreasing function as ϕ(x, u) is a (weakly) decreasing

function of u for all x ∈ Θ. Furthermore, for almost all x ∈ Θ, ϕ(x, u) grows arbitrarily

large as u → 0 and ϕ(x, u) = 0 for all u ≥ βℓ, which implies that limu→0 V (u) = ∞
and V (u) = 0 for all u ≥ βℓ. Thus, there is a unique point ū ∈ (0, βℓ) such that

V (ū) = 1.

Lemma 2. Consider a market segmentation H ∈ MPC(F ), and let (τ ∗H , u
∗
H) be its

essentially-unique search equilibrium. Then u∗H ≤ ū. Furthermore, H ∈ H(u∗H) if and

only if u∗H = ū.

Proof of Lemma 2. For each H ∈ MPC(F ),

V (ū) = 1 = k

∫
Θ

ϕ(x, u∗H)dH(x) ≤ V (u∗H),
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where the first equality follows by construction of ū, the second equality follows from

(2), and the inequality follows because V is the value function of (LP-u). Since V is

a weakly decreasing function, we have ū ≥ u∗H , establishing the first desired result.

Furthermore, by construction, the above inequality holds with equality if and only

if H ∈ H(u∗H). However, since ū is the unique value for which V (u) = 1, the above

inequality holds with equality if and only u∗H = ū. This establishes the second desired

result.

Let us now prove the general characterization for constrained-efficient market

segmentations given in (5), and then prove the characterization for the special cases

when t/m(t) is convex or concave.

General case:

(Only-if direction): Suppose H is a constrained-efficient market segmentation, i.e.,

H solves (SB′). We want to show that H ∈ H(u∗H). By Lemma 2, this is equivalent to

showing that u∗H = ū. Furthermore, Lemma 2 already establishes that ū ≥ u∗H . Thus,

to show the desired “only if” direction, it suffices to show that u∗H ≥ ū.

Notice that under Assumption 3, the buyers’ payoff is equivalent to expected

total surplus scaled down by a constant ℓ. Therefore, because H solves (SB′), we have

u∗H ≥ u∗
Ĥ

for all Ĥ ∈ MPC(F ). In particular—recalling that H(ū) is non-empty—for

each Ĥ ∈ H(ū), we have u∗H ≥ u∗
Ĥ
= ū, where the last equality follows from Lemma 2.

(If direction): Suppose H satisfies (5), i.e., H ∈ H(u∗H). By Lemma 2, ū = u∗H ≥
u∗
Ĥ

for all Ĥ ∈ MPC(F ). In other words, for all Ĥ ∈ MPC(F ),

ℓ · k
∫
Θ

m(τ ∗H(x))xdH(x)︸ ︷︷ ︸
=u∗

H

≥ ℓ · k
∫
Θ

m(τ ∗
Ĥ
(x))xdĤ(x)︸ ︷︷ ︸

=u∗
Ĥ

,

where the equalities follow by (4). The above inequality then establishes the desired

result: H solves (SB′).

We have thus far shown that H is a constrained-efficient market segmentation if

and only if H ∈ H(ū) ≡ H(u∗H). This concludes the characterization for the general

statement.

Let us proceed by showing that when the mapping t 7→ t/m(t) is concave, then
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F ∈ H(u) for all u ∈ (0, βℓ). Similarly, when the mapping t 7→ t/m(t) is convex, we

show that for each u ∈ (0, βℓ), there exists a binary market segmentation in H(u).

First, suppose the mapping t 7→ t/m(t) is concave, and therefore, g is convex. In

this case, ϕ(x, u) = g(ℓ · x/u)1[βℓx>u] is convex in x for all u ∈ (0, βℓ).13 As a result,

for all H ′, H ′′ ∈ MPC(F ) where H ′ is a mean-preserving contraction of H ′′, we have

k

∫
Θ

ϕ(x, u)dH ′(x) ≤ k

∫
Θ

ϕ(x, u)dH ′′(x).

Therefore, F ∈ H(u) for all u ∈ (0, βℓ). Consequently, F ∈ H(ū), i.e., there exists a

perfect market segmentation is constrained-efficient, establishing Point (i) of Propo-

sition 5.

Second, suppose the mapping t 7→ t/m(t) is convex, and therefore, g is concave.

In this case, ϕ(x, u) = g(ℓ · x/u)1[ℓβx>u] is piece-wise concave in x for all u ∈ (0, βℓ).

Specifically, it is constant over [0, u/(βℓ)] and concave over [u/(βℓ), 1].14

Define the functions X : Θ → Θ and X : Θ → Θ given by X(θ) := EF [θ̃|θ̃ ≤ θ]

and X(θ) := EF [θ̃|θ̃ ≥ θ], respectively. As F is assumed to be absolutely continuous,

both X and X are continuous and strictly increasing functions. Furthermore, it can

be readily checked that the mapping θ 7→ θ−X(θ) is positive and strictly increasing

over (0, 1), while the mapping θ 7→ θ −X(θ) is negative and strictly increasing over

(0, 1).

For each u ∈ (0, βℓ), let θu := min{θ ∈ Θ : X(θ) ≥ u/(βℓ)}, which is well-defined

because X is continuous and strictly increasing, and {θ ∈ Θ : X(θ) ≥ u/(βℓ)} is

non-empty.15 Define Gu : [θu, 1] → R as the function given by

Gu(θ) := g

(
ℓ ·X(θ)

u

)
+ g′

(
ℓ ·X(θ)

u

)
ℓ

u

(
θ −X(θ)

)
,

which is a continuous and strictly increasing function because (a) both g and X are

13Recall that limy→1/β g(y) = 0.
14Kolotilin et al. (2022) describe such a ϕ function as “S-shaped.” They show that if ϕ is continuously
differentiable and S-shaped, there exists a solution to (LP-u) that is an upper-censorship: perfectly
segment types below a cutoff and pool all the types above the cutoff. However, their results cannot
be directly applied here as the ϕ(x, u) is not differentiable at x = u

βℓ . Additionally, Proposition 5
goes further than an upper censorship; it claims that a binary segmentation is sufficient to obtain
constrained efficiency.

15For example, X(1) = 1 > u/(βℓ).
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continuous and strictly increasing functions, (b) g′ is a (weakly) decreasing function

by concavity of g, and (c) the mapping θ 7→ θ−X(θ) is negative and strictly increasing

over (0, 1).

Next, define the cutoff θcu := min{θ ∈ [θu, 1] : Gu(θ) ≥ 0}, which is well-defined

because Gu is continuous and strictly increasing, and {θ ∈ [θu, 1] : Gu(θ) ≥ 0} is

non-empty.16

Lemma 3. For each u ∈ (0, βℓ),

X(θcu) ≤
u

βℓ
< X(θcu).

Proof of Lemma 3. Fix an arbitrary u ∈ (0, βℓ). First, notice that X(u/(βℓ)) >

u/(βℓ) by construction. Since θu is the smallest type in Θ that satisfiesX(θ) ≥ u/(βℓ),

we have u/(βℓ) ≥ θu.

Next, notice that

G

(
u

βℓ

)
= g

ℓ ·X
(

u
βℓ

)
u

+ g′

ℓ ·X
(

u
βℓ

)
u

 ℓ

u

(
u

βℓ
−X

(
u

βℓ

))

≥ g

(
ℓ · u

βℓ

u

)
= 0,

where the inequality follows from the concavity of g, and the last equality follows

because g(1/β) = 0. Since θcu is the smallest type in [θu, 1] that satisfies Gu(θ) ≥ 0,

we have u/(βℓ) ≥ θcu.

By construction, X(θ) ≤ θ for all θ ∈ Θ. Thus, X(θcu) ≤ θcu ≤ u/(βℓ), which

establishes the first inequality in the lemma.

Also by construction, θcu ≥ θu, which implies that X(θcu) ≥ X(θu) ≥ u/(βℓ).

Suppose, for the sake of contradiction, X(θcu) = u/(βℓ). Then

Gu (θ
c
u) = g

(
ℓ · u

βℓ

u

)
︸ ︷︷ ︸

=0

+ g′
(
ℓ · u

βℓ

u

)
ℓ

u︸ ︷︷ ︸
>0

(
θcu −X(θcu)

)
︸ ︷︷ ︸

<0

< 0,

16For example, 1 − X(1) = 0, so Gu(1) = g(ℓ/u) > 0 for each u ∈ (0, βℓ). The inequality follows
because g is a strictly increasing function with g(1/β) = 0.

35



which contradicts the fact that, by definition, Gu(θ
c
u) ≥ 0. To avoid the contradiction,

we must have X(θcu) > u/(βℓ), establishing the second inequality in the lemma.

Finally, consider the binary posterior-mean distribution Hu ∈ MPC(F ) given by

Hu(x) =


0 if x < X(θcu)

F (θc) if x ∈ [X(θcu), X(θcu))

1 if x ≥ X(θcu)

.

From Theorem 1 of Dworczak and Martini (2019) (DM henceforth), Hu solves

(LP-u) if there exists a convex function pu : Θ → R such that

(a) ϕ(·, u) ≤ pu pointwise,

(b) supp(Hu) ⊆ {x ∈ Θ : ϕ(x, u) = pu(x)}, and

(c) EHu [pu(x)] = EF [pu(x)].

Consider the function p : Θ → R given by

pu(x) =


0 if x < θcu

g

(
ℓ ·X(θcu)

u

)
+ g′

(
ℓ ·X(θcu)

u

)
ℓ

u

(
x−X(θcu)

)
if x ≥ θcu

.

Notice that pu(x) is (weakly) increasing and convex as it is the upper envelope of two

affine functions. Clearly, pu(x) = ϕ(x, u) for all x < θcu. For x ∈ [θcu, u/(βℓ)], we have

ϕ(x, u) = 0 ≤ Gu(θ
c
u) = pu(θ

c
u) ≤ pu(x),

where the first inequality follows by definition of θcu, the second equality follows by

construction of pu, and the second inequality follows because pu is weakly increasing.

For x > u/(βℓ), we have

ϕ(x, u) = g

(
ℓ · x
u

)
≤ g

(
ℓ ·X(θcu)

u

)
+ g′

(
ℓ ·X(θcu)

u

)
ℓ

u

(
x−X(θcu)

)
= pu(x),

where the inequality follows from the concavity of g. Thus, ϕ(·, u) ≤ pu pointwise,

establishing point (a) of DM.
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By construction,

supp(Hu) = {X(θcu), X(θcu)} ⊆ [0, θcu] ∪ {X(θcu)} ⊆ {x ∈ Θ : pu(x) = ϕ(x, u)},

establishing point (b) of DM.

Finally, EHu [p(x)] = pu
(
X(θcu)

)
(1− F (θcu)) while

EF [pu(x)] =

∫ 1

θcu

[
g

(
ℓ ·X(θcu)

u

)
+ g′

(
ℓ ·X(θcu)

u

)
ℓ

u

(
x−X(θcu)

)]
dF (x)

=pu
(
X(θcu)

)
(1− F (θcu)) + g′

(
ℓ ·X(θcu)

u

)
ℓ

u

∫ 1

θcu

(
x−X(θcu)

)
dF (x)︸ ︷︷ ︸

=0

=pu
(
X(θcu)

)
(1− F (θcu)),

where the last equality follows because, by definition, X(θcu) = EF [θ̃|θ̃ ≥ θcu], estab-

lishing point (c) of DM.

We can therefore conclude thatHu ∈ H(u). Additionally, by Lemma 3, ϕ(X(θcu), u) =

0 < ϕ(X(θcu), u). Since these properties hold for each for each u ∈ (0, βℓ), they also

hold for u = ū. Therefore, there exists a constrained-efficient binary market segmen-

tation in which all buyers join only the submarket with the highest expected type,

while the submarket with the lowest expected type remains inactive in equilibrium.

This establishes Point (ii) of the proposition.

A.2. General characterization for constrained-efficient segmentations

This section provides a characterization for constrained-efficient market segmenta-

tions under Assumption 1 and Assumption 2 only.

From Proposition 3, each market segmentation σ has an essentially-unique search

equilibrium (τ ∗σ , u
∗
σ) with τ

∗
σ(·) = ϕ(·, u∗σ), where recall that

ϕ(ν, u) = g

(
Eν [λ(θ)θ]

u

)
1[Eν [λ(θ)θ]>

u
β ]
.

Given a market segmentation σ and buyers’ anticipated payoff u, define the ex-
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ante total surplus as

S(σ, u) := k

∫
∆(Θ)

m(ϕ(ν, u))Eν [θ]σ(dν),

and the ex-ante buyer’s payoff as

U(σ, u) = k

∫
∆(Θ)

m(ϕ(ν, u))Eν [λ(θ)θ]σ(dν).

We can then express the planner’s second-best problem (SB) as

max
σ

S(σ, u∗σ).

The objective in (SB) is non-linear because the planner’s choice of a market segmenta-

tion affects both what the buyers’ believe about sellers’ types within each submarket,

and also how they trade off joining one submarket over another. Instead of directly

solving (SB) directly, consider instead the following problem:

max
σ,

u∈[0,β supθ∈Θ λ(θ)θ]

S(σ, u) s.t. U(σ, u) ≤ u. (BP)

The problem in (BP) decouples the two interdependent effects in (SB): holding fixed

the anticipated payoff, the market segmentation now only affects beliefs, and holding

fixed the market segmentation, the anticipated payoff affects the trade-offs across

submarkets. The interdependence between these two effects is then captured by the

constraint, U(σ, u) ≤ u, which ensures that buyers’ anticipated payoffs are consistent

with their expected gains from trade. As such, holding u fixed, the optimal choice of

market segmentation in (BP) is akin to a (constrained) Bayesian Persuasion problem

with a continuum of states Kamenica and Gentzkow (2011).

Proposition 6. A market segmentation σ is constrained-efficient if and only if (σ, u∗σ)

is a solution to (BP).

Proof of Proposition 6. Let σ′ be a constrained-efficient market segmentation, i.e., σ′

is a solution to (SB). Let (σ′′, u′′) be a solution to (BP).

Notice that for any market segmentation σ, the pair (σ, u∗σ) satisfy the constraint

in (BP), and thus, (BP) is a relaxation of (SB). Therefore, S(σ′, u∗σ′) ≤ S(σ′′, u′′).
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Conversely, notice that u′′ > 0; otherwise the constraint in (BP) would be violated.

Additionally, we must have U(σ′′, u′′) = u′′; otherwise, the planner could lower the

anticipated payoff by a small amount, which would improve the objective without

violating the constraint. However, the constraint holding with equality implies u′′ =

u∗σ′′ . Hence, S(σ′, u∗σ′) ≥ S(σ′′, u∗σ′′) = S(σ′′, u′′).
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